Skip to main content
Log in

Crocidolite asbestos causes an induction of p53 and apoptosis in cultured A-549 lung carcinoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A number of genotoxic chemicals and agents, such as benzo(a)pyrene and ultraviolet light, are able to induce nuclear accumulation of p53 protein. Usually, this response is transient and a consequence of stabilization of the wild-type p53 protein. After withdrawal of the exposure, the amount of p53 protein returns to a normal level within hours or a few days. We have studied the p53 response to the exposure of crocidolite asbestos in A-549 lung carcinoma cells using three different methods, i.e., p53 immunohistochemistry, Western blotting and metabolic labelling followed by p53 immunoprecipitation. With these techniques we demonstrate a dose-dependent p53 nuclear response to crocidolite exposure. The half-life of p53 protein in A-549 lung carcinoma cells cultured in serum-free media increased from 30 up to 80 min, and the protein reacted with a wild-type specific antibody suggesting that it was in a wild-type conformation. In situ 3′-end labelling of A-549 cells demonstrated a dose-dependent increase in apoptotic activity. Our data support the idea that increased apoptotic activity, induced by crocidolite, is mediated by p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjelogrlic NM, Mäkinen M, Vähäkangas K. Benzo[ a]pyrene-7,8-diol-9,10-epoxide-DNA adducts and increased p53 protein in mouse skin. Carcinogenesis 1994; 15: 771–774.

    PubMed  CAS  Google Scholar 

  2. Deppert W, Buschhausen-Denker G, Patschinsky T, Steinmeyer K. Cell cycle control of p53 in normal (3T3) and chemically transformed (Meth A) mouse cells. II Requirement for cell cycle progression. Oncogene 1990; 5: 1701–1706.

    PubMed  CAS  Google Scholar 

  3. Fritsche M, Haessler C, Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 1993; 8: 307–318.

    PubMed  CAS  Google Scholar 

  4. Hall PA, McKee PH, Menage H, Dover R, Lane DP. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 1993; 8: 203–207.

    PubMed  CAS  Google Scholar 

  5. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–6311.

    PubMed  CAS  Google Scholar 

  6. Liu M, Dhanwada KR, Birt DF, Hecht S, Pelling JC. Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis 1994; 15: 1089–1092.

    PubMed  CAS  Google Scholar 

  7. Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 4: 1689–1694.

    PubMed  CAS  Google Scholar 

  8. Mishra A, Liu J-Y, Brody AR, Morris GF. Inhaled asbestos fibers induce p53 expression in the rat lung. Am J Respir Cell Mol Biol 1997; 16: 479–485.

    PubMed  CAS  Google Scholar 

  9. Rämet M, Castrén K, Järvinen K, et al. p53 protein expression is correlated with benzo[a]pyrene-DNA adducts in carcinoma cell lines. Carcinogenesis 1995; 16: 2117–2124.

    PubMed  Google Scholar 

  10. Smith ML, Chen I-T, Zhan Q, O'Connor PM, Fornace Jr AJ. Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene 1995; 10: 1053–1059.

    PubMed  CAS  Google Scholar 

  11. Tapiainen T, Järvinen K, Pääkkö P, Bjelogrlic N, Vähäkangas K. TPA decreases the p53 response to benzo[a]pyrene-DNA adducts in vivo in mouse skin. Carcinogenesis 1996; 17: 1377–1380.

    PubMed  CAS  Google Scholar 

  12. Unger C, Kress S, Buchmann A, Schwarz M. γ-irradiation-induced micronuclei from mouse hepatoma cells accumulate high levels of the tumor suppressor protein p53. Cancer Res 1994; 54: 3651–3655.

    PubMed  CAS  Google Scholar 

  13. Appel JD, Fasy TM, Kohtz DS, Kohtz JD, Johnson EM. Asbestos fibers mediate transformation of monkey cells by exogenous plasmid DNA. Proc Natl Acad Sci USA 1988; 85: 7670–7674.

    Article  PubMed  CAS  Google Scholar 

  14. Barret JC, Lamb PW, Wiseman RW. Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect 1989; 81: 81–89.

    Google Scholar 

  15. Rom WN, Travis WD, Brody AR. Cellular and molecular basis of the asbestos-related diseases. Am Rev Respir Dis 1991; 143: 408–422.

    PubMed  CAS  Google Scholar 

  16. Libbus BL, Illenye SA, Craighead JE. Induction of DNA strand breaks in cultured rat embryo cells by crocidolite asbestos as assessed by nick translation. Cancer Res 1989; 49: 5713–5718.

    PubMed  CAS  Google Scholar 

  17. Goodglick LA, Kane AB. Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Res 1986; 46: 5558–5566.

    PubMed  CAS  Google Scholar 

  18. Hansen K, Mossman BT. Generation of superoxide (Of2-) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 1987; 47: 1681–1686.

    PubMed  CAS  Google Scholar 

  19. Mossman BT, Marsh JP, Shatos MA. Alteration of superoxide dismutase activity in tracheal epithelial cells by asbestos and inhibition of cytotoxicity by antioxidants. Lab Invest 1986; 54: 204–212.

    PubMed  CAS  Google Scholar 

  20. Timbrell V. Characteristics of the International Union against cancer standard reference samples of asbestos. Pneumoconiosis, proceedings International Conference, Johannesburg, South Africa, 1969.

  21. Soini Y, Kamel D, Nuorva K, Lane DP, Vähäkangas K, Pääkkö P. Low p53 protein expression in salivary gland tumours compared with lung carcinomas. Virchows Arch [A] 1992; 421: 415–420.

    CAS  Google Scholar 

  22. Pääkkö P, Kirby M, du Bois RM, Gillissen A, Ferrans VJ, Crystal RG. Activated neutrophils secrete stored α1-antitrypsin. Am J Respir Crit Care Med 1996; 154: 1829–1833.

    PubMed  Google Scholar 

  23. Soini Y, Virkajärvi N, Lehto V-P, Pääkkö P. Hepatocellular carcinomas with a high proliferation index and a low degree of apoptosis and necrosis are associated with a shortened survival. Br J Cancer 1996; 73: 1025–1030.

    PubMed  CAS  Google Scholar 

  24. Törmänen U, Eerola A-K, Rainio P, et al. Enhanced apoptosis predicts shortened survival in non-small cell lung carcinoma. Cancer Res 1995; 55: 5595–5602.

    PubMed  Google Scholar 

  25. Wang NS, Jaurand MC, Magne L, Kheuang L, Pinchon MC, Bignon J. The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and transmission electron microscopic study. Am J Pathol 1987; 126: 343–349.

    PubMed  CAS  Google Scholar 

  26. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278: 261–263.

    Article  PubMed  CAS  Google Scholar 

  27. International Agency for Research on Cancer. Asbestos. Lyon, France: IARC, 1997; IARC Monogr Eval Carcinog Risk Chem Man, Vol. 14.

    Google Scholar 

  28. Milner J. The role of p53 in normal control of cell proliferation. Curr Opin Cell Biol 1991; 3: 282–286.

    Article  PubMed  CAS  Google Scholar 

  29. Grand RJA, Owen D, Rookes SM, Gallimore PH. Control of p53 expression by adenovirus 12 early region 1A and early region 1B 54K proteins. Virology 1996; 218: 23–34.

    Article  PubMed  CAS  Google Scholar 

  30. Denissenko F, Pao A, Tang M-S, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 1996; 274: 430–432.

    Article  PubMed  CAS  Google Scholar 

  31. Greenblatt MS, Bennett WB, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–4878.

    PubMed  CAS  Google Scholar 

  32. Kerr JFR, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 1994; 73: 2013–2026.

    Article  PubMed  CAS  Google Scholar 

  33. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    PubMed  CAS  Google Scholar 

  34. BéruBé KA, Quinlan TR, Fung H, et al. Apoptosis is observed in mesothelial cells after exposure to crocidolite asbestos. Am J Respir Cell Mol Biol 1996; 15: 141–147.

    Article  PubMed  Google Scholar 

  35. Broaddus VC, Yang L, Scavo LM, Ernst JD, Boylan AM. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest 1996; 98: 2050–2059.

    PubMed  CAS  Google Scholar 

  36. Goldberg JL, Zanella CL, Janssen YMW, et al. Novel cell imaging techniques show induction of apoptosis and proliferation in mesothelial cells by asbestos. Am J Respir Cell Mol Biol 1997; 17: 265–271.

    PubMed  CAS  Google Scholar 

  37. Hamilton RF, Li L, Iyer R, Holian A. Asbestos induces apoptosis in human alveolar macrophages. m J Physiol 1996; 271: L813–L819.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pääkkö, P., Rämet, M., Vähäkangas, K. et al. Crocidolite asbestos causes an induction of p53 and apoptosis in cultured A-549 lung carcinoma cells. Apoptosis 3, 203–212 (1998). https://doi.org/10.1023/A:1009655007284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009655007284

Navigation