Skip to main content
Log in

The difference in the active sites for CO2 and CO hydrogenations on Cu/ZnO-based methanol synthesis catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of Zn in copper catalysts on the activities for both CO2 and CO hydrogenations has been examined using a physical mixture of Cu/SiO2+ZnO/SiO2 and a Zn-containing Cu/SiO2 catalyst or (Zn)Cu/SiO2. Reduction of the physical mixture with H2 at 573–723 K results in an increase in the yield of methanol produced by the CO2 hydrogenation, while no such a promotion was observed for the CO hydrogenation, indicating that the active site is different for the CO2 and CO hydrogenations. However, the methanol yield by CO hydrogenation is significantly increased by the oxidation treatment of the (Zn)Cu/SiO2 catalyst. Thus it is concluded that the Cu–Zn site is active for the CO2 hydrogenation as previously reported, while the Cu–O–Zn site is active for the CO hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Skrzypek,J. Sloczynski andS. Ledakowicz, Methanol Synthesis (Polish Scientific Publisher, Warszawa, 1994).

    Google Scholar 

  2. J.C.J. Bart andR.P.A. Sneeden, Catal. Today 2 (1987) 1.

    Google Scholar 

  3. K. Klier, Adv. Catal. 31 (1982) 243.

    Google Scholar 

  4. G.C. Chinchen,P.J. Denny,J.R. Jennings,M.S. Spencer andK.C. Waugh, Appl. Catal. 36 (1988) 1.

    Google Scholar 

  5. M.S. Spencer, Catal. Lett. 50 (1998) 37.

    Google Scholar 

  6. M.S. Spencer, Catal. Lett. 60 (1999) 45.

    Google Scholar 

  7. J.S. Lee,K.H. Lee,S.Y. Lee andY.G. Kim, J. Catal. 144 (1993) 414.

    Google Scholar 

  8. G.C. Chinchen,P.J. Denny,D.G. Parker,M.S. Spencer andD.A. Whan, Appl. Catal. 30 (1987) 333.

    Google Scholar 

  9. M. Takagawa andM. Ohsugi, J. Catal. 107 (1987) 161.

    Google Scholar 

  10. K. Klier,V. Chatikavanij,R.G. Herman andG.W. Simmons, J. Catal. 74 (1982) 343.

    Google Scholar 

  11. M. Bowker,H. Houghton andK.C. Waugh, J. Chem. Soc. Faraday Trans. I 77 (1981) 3023.

    Google Scholar 

  12. N.Y. Topsøe andH. Topsøe, J. Mol. Catal. A 141 (1999) 95.

    Google Scholar 

  13. C.V. Ovesen,B.S. Clausen,J. Schiøtz,P. Stoltze,H. Topsøe andJ.K. Nørskov, J. Catal. 168 (1997) 133.

    Google Scholar 

  14. J. Yoshihara andC.T. Campbell, J. Catal. 161 (1996) 776.

    Google Scholar 

  15. R.A. Hadden,B. Sakakini,J. Tabatabaei andK.C. Waugh, Catal. Lett. 44 (1997) 145.

    Google Scholar 

  16. Y. Kanai,T. Watanabe,T. Fujitani,M. Saito,J. Nakamura andT. Uchijima, Catal. Lett. 27 (1994) 67.

    Google Scholar 

  17. Y. Kanai,T. Watanabe,T. Fujitani,T. Uchijima andJ. Nakamura, Catal. Lett. 38 (1996) 157.

    Google Scholar 

  18. J. Nakamura,I. Nakamura,T. Uchijima,Y. Kanai,T. Watanabe andT. Fujitani, J. Catal. 160 (1996) 65.

    Google Scholar 

  19. T. Fujitani,T. Matsuda,Y. Kushida,S. Ogihara,T. Uchijima andJ. Nakamura, Catal. Lett. 49 (1997) 175.

    Google Scholar 

  20. I. Nakamura,H. Nakano,T. Fujitani,T. Uchijima andJ. Nakamura, Surf. Sci. 402-404 (1998) 92.

    Google Scholar 

  21. T. Fujitani andJ. Nakamura, Catal. Lett. 56 (1998) 119.

    Google Scholar 

  22. T. Fujitani andJ. Nakamura, Appl. Catal. A 191 (2000) 111.

    Google Scholar 

  23. T. Fujitani andJ. Nakamura, Catal. Lett. 63 (1999) 245.

    Google Scholar 

  24. T. Fujitani,I. Nakamura,T. Uchijima andJ. Nakamura, Surf. Sci. 383 (1997) 285.

    Google Scholar 

  25. E.K. Poels andD.S. Brands, Appl. Catal. A 191 (2000) 83.

    Google Scholar 

  26. I. Nakamura,T. Fujitani,T. Uchijima andJ. Nakamura, J. Vac. Sci. Technol. A 14 (1996) 1464.

    Google Scholar 

  27. I. Nakamura,T. Fujitani,T. Uchijima andJ. Nakamura, Surf. Sci. 400 (1998) 387.

    Google Scholar 

  28. I. Chorkendorff,P.A. Taylor andP.B. Rasmussen, J. Vac. Sci. Technol. A 10 (1992) 2277.

    Google Scholar 

  29. R.G. Herman,K. Klier,G.W. Simmons,B.P. Finn,J.B. Bulko andT.P. Kobylinski, J. Catal. 56 (1979) 407.

    Google Scholar 

  30. S. Mehta,G.W. Simmons,K. Klier andR.G. Herman, J. Catal. 57 (1979) 339.

    Google Scholar 

  31. G.R. Sheffer andT.S. King, J. Catal. 115 (1989) 376.

    Google Scholar 

  32. G.R. Sheffer andT.S. King, J. Catal. 116 (1989) 488.

    Google Scholar 

  33. L.E.Y. Nonneman andV. Ponec, Catal. Lett. 7 (1990) 213.

    Google Scholar 

  34. W.R.A.M. Robinson andJ.C. Mol, Appl. Catal. 60 (1990) 73.

    Google Scholar 

  35. R. Burch,S.E. Golunski andM.S. Spencer, J. Chem. Soc. Faraday Trans. 86 (1990) 2683.

    Google Scholar 

  36. Y. Choi, K. Futagami, T. Fujitani and J. Nakamura, Appl. Catal. A, in press.

  37. W.B. Pearson, A Handbook of Lattice Spacing of Metals and Alloys (Pergamon, Oxford, 1973) p. 601.

    Google Scholar 

  38. J. Nakamura,I. Nakamura,T. Uchijima,T. Watanabe andT. Fujitani, in: Proc. 11th Int. Congr. on Catalysis, Stud. Surf. Sci. Catal., Vol. 101 (Elsevier, Amsterdam, 1996) p. 1389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y., Futagami, K., Fujitani, T. et al. The difference in the active sites for CO2 and CO hydrogenations on Cu/ZnO-based methanol synthesis catalysts. Catalysis Letters 73, 27–31 (2001). https://doi.org/10.1023/A:1009074219286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009074219286

Navigation