Skip to main content
Log in

Monocyte, macrophage and foreign body giant cell interactions with molecularly engineered surfaces

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To elucidate the mechanisms involved in monocyte/macrophage adhesion and fusion to form foreign body giant cells on molecularly engineered surfaces, we have utilized our in vitro culture system to examine surface chemistry effects, cytoskeletal reorganization and adhesive structure development, and cell receptor-ligand interactions in in vitro foreign body giant cell formation. Utilizing silane-modified surfaces, monocyte/macrophage adhesion was essentially unaffected by surface chemistry, however the density of foreign body giant cells (FBGCs) was correlated with surface carbon content. An exception to the surface-independent macrophage adhesion were the alkyl-silane modified surfaces which exhibited reduced adhesion and FBGC formation. Utilizing confocal immunofluorescent techniques, cytoskeletal reorganization and adhesive structure development in in vitro FBGC formation was studied. Podosomes were identified as the adhesive structures in macrophages and FBGCs based on the presence of characteristic cytoplasmic proteins and F-actin at the ventral cell surface. Focal adhesion kinase (FAK) and focal adhesions were not identified as the adhesive structures in macrophages and FBGCs. In studying the effect of preadsorbed proteins on FBGC formation, fibronectin or vitronectin do not play major roles in initial monocyte/macrophage adhesion, whereas polystyrene surfaces modified with RGD exhibited significant FBGC formation. These studies identify the potential importance of surface chemistry-dependent conformational alterations which may occur in proteins adsorbed to surfaces and their potential involvement in receptor-ligand interactions. Significantly, preadsorption of α2-macroglobulin facilitated macrophage fusion and FBGC formation readily on the RGD surface in the absence of any additional serum proteins. As α2-macroglobulin receptors are not found on blood monocytes but are expressed only with macrophage development, these results point to a potential interaction between adsorbed α2-macroglobulin and its receptors on macrophages during macrophage development and fusion. These studies identify important surface independent and dependent effects in foreign body reaction development that may be important in the identification of biological design criteria for molecularly engineered surfaces and tissue engineered devices. © 1999 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Mcnally and J. M. Anderson, Am. J. Pathol. 147 (1995) 1487.

    PubMed  Google Scholar 

  2. K. M. Defife, C. R. Jenney, A. K. Mcnally, E. Colton and J. M. Anderson, J. Immunol. 158 (1997) 3385.

    PubMed  Google Scholar 

  3. W. J. Kao, A. K. Mcnally, A. Hiltner and J. M. Anderson, J. Biomed. Mater. Res. 29 (1995) 1267.

    PubMed  Google Scholar 

  4. A. K. Mcnally, K. M. Defife and J. M. Anderson, Am. J. Pathol. 149 (1996) 975.

    PubMed  Google Scholar 

  5. H. H. Weetal, Appl. Biochem. Biotechnol. 41 (1993) 157.

    PubMed  Google Scholar 

  6. B. Arkles, ‘Silicon compounds: register and review’, 5th Edn (Hüls America, Inc., Piscataway, NJ, 1991) p. 59.

    Google Scholar 

  7. S. R. Wasserman, Y. Tao and G. M. Whitesides, Langmuir 5 (1989) 1074.

    Google Scholar 

  8. R. E. Healy, B. Lom and P. E. Hockberger, Biotechnol. Bioengng 43 (1994) 792.

    Google Scholar 

  9. G. Truskey and T. Proulx, Biomaterials 14 (1983) 243.

    Google Scholar 

  10. D. Kleinfeld, K. Kahler and P. Hockberger, J. Neurosci. 8 (1988) 4098.

    PubMed  Google Scholar 

  11. S. Margel, E. A. Vogler, L. Firment, T. Watt, S. Haynie and D. Y. Sogah, J. Biomed. Mater. Res. 27 (1993) 1463.

    PubMed  Google Scholar 

  12. H. L. Yin and J. H. Hartwig, J. Cell Sci. Suppl. 9 (1988) 169.

    PubMed  Google Scholar 

  13. V. P. Lehto, T. Hovi, T. Vartio, R. A. Badley and I. Virtanen, Lab. Invest. 47 (1982) 391.

    PubMed  Google Scholar 

  14. P. A. Amato, E. R. Unanue and D. L. Taylor, J. Cell Biol. 96 (1983) 750.

    PubMed  Google Scholar 

  15. E. P. Reaven and S. G. Axline, ibid. 59 (1973) 12.

    PubMed  Google Scholar 

  16. J. M. Oliver and R. D. Berlin, in ‘Macrophages and natural killer cells’, edited by S. J. Normann and E. Sorkin (Plenum Press, NY, 1982) p. 113.

    Google Scholar 

  17. H. Tapper, J. Leukocyte Biol. 59 (1996) 613.

    PubMed  Google Scholar 

  18. K. Lewandowska, N. Balachander, C. N. Sukenik and L. A. Culp, J. Cell Physiol. 141 (1989) 334.

    PubMed  Google Scholar 

  19. L. E. Dike and S. R. Farmer, Proc. Natl Acad. Sci. USA 85 (1988) 6792.

    PubMed  Google Scholar 

  20. P. C. Marchisio, D. Cirillo, A. Teti, A. Zamboninzallone and G. Tarone, Exp. Cell Res. 169 (1987) 202.

    PubMed  Google Scholar 

  21. K. Burridge, K. Fath, T. Kelly, G. Nuckolls and C. Turner, Ann. Rev. Cell Biol. 4 (1988) 487.

    PubMed  Google Scholar 

  22. J. M. Messier, L. M. Shaw, M. Chafel, P. Matsudaira and A. M. Mercurio, Cell Motil. Cytoskel. 25 (1993) 223.

    Google Scholar 

  23. K. Burridge, C. E. Turner and L. H. Romer, J. Cell Biol. 119 (1992) 893.

    PubMed  Google Scholar 

  24. T. H. Lin, A. Yurochko, L. Kornberg, J. Morris, J. J. Walker, S. Haskill and R. L. Juliano, ibid. 126 (1994) 1585.

    PubMed  Google Scholar 

  25. W. T. Chen, J. Exp. Zool. 251 (1989) 167.

    PubMed  Google Scholar 

  26. P. M. Henson, Am. J. Pathol. 101 (1980) 494.

    PubMed  Google Scholar 

  27. S. D. Wright and S. C. Silverstein, Nature 309 (1984) 359.

    PubMed  Google Scholar 

  28. J. M. Heiple, S. D. Wright, N. S. Allen and S. C. Silverstein, Cell Motil. Cytoskel. 15 (1990) 260.

    Google Scholar 

  29. A. Vignery, T. Niven-fairchild, D. H. Ingbar and M. Caplan, J. Histochem. Cytochem. 37 (1989) 1265.

    PubMed  Google Scholar 

  30. Q. H. Zhao, N. S. Topham, J. M. Anderson, A. Hiltner, G. Lodoen and C. R. Payet, J. Biomed. Mater. Res. 25 (1991) 177.

    PubMed  Google Scholar 

  31. A. K. Mcnally and J. M. Anderson, Proc. Natl Acad. Sci. USA 91 (1994).

  32. Q. H. Zhao, A. K. Mcnally, K. R. Rubin, M. Renier, Y. Wu, V. Rose-caprara, J. M. Anderson, A. Hiltner, P. Urbanski and K. Stokes, J. Biomed. Mater. Res. 27 (1993) 379.

    PubMed  Google Scholar 

  33. S. E. Williams, M. Z. Kounnas, K. M. Argraves, W. S. Argraves and D. K. Strickland, Ann. NY Acad. Sci. 737 (1994) 1.

    Google Scholar 

  34. L. Sottrup-Jensen, J. Biol. Chem. 264 (1989) 11539.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.M., Defife, K., Mcnally, A. et al. Monocyte, macrophage and foreign body giant cell interactions with molecularly engineered surfaces. Journal of Materials Science: Materials in Medicine 10, 579–588 (1999). https://doi.org/10.1023/A:1008976531592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008976531592

Keywords

Navigation