Skip to main content
Log in

The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultra-high molecular weight polyethylene composite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Surface oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder has an influence on the mixing procedure of chopped fibres and UHMWPE powder. Due to this oxidation hydrogen bonds can be formed between the fibres and powder particles, leading to a more homogeneous fibre–powder mixture. This treatment improves the fibre–matrix interface and thus the physical properties of the composite. Chromic acid treatment also has an influence on the mechanical and tribological properties of the aramid–UHMWPE composite. Although only a relatively small improvement is observed in the modulus, yield stress and stress at break, of 33, 17 and 9%, respectively, a substantial enhancement in wear resistance of 117% is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. de Boer, PhD thesis, University of Groningen, The Netherlands (1984).

    Google Scholar 

  2. J. H. Dumbleton, “Tribology of natural and artificial joints” (Elsevier Amsterdam, 1981).

    Google Scholar 

  3. J. R. Cooper, D. Dowson and J. Fisher, Wear 162-4 (1993) 378.

    Google Scholar 

  4. J. S. B. Gunther and R. M. Rose, J. Long-term Eff. Medical Impl. 4 (1994) 157.

    Google Scholar 

  5. A. Wang, D. C. Sun, C. Stark and J. H. Dumbleton, Wear, 181-3 (1995) 241.

    Google Scholar 

  6. A. Wang, A. Essner, C. Stark and J. H. Dumbleton, Biomaterials 17 (1996) 865.

    Google Scholar 

  7. N. Al Saffar, P. A. Revell, H. A. Khwaja and W. Bonfield, J. Mater. Sci. Mater. Med. 6 (1995) 762.

    Google Scholar 

  8. K. J. Mergevicius, T. W. Bauer, J. T. Mcmahon, S. A. Brown and K. Merritt, J. Bone Joint Surg. 76a (1994) 1664.

    Google Scholar 

  9. J. M. HofstÉ, H. H. G. Smit and A. J. Pennings, Polym. Bull. 37 (1996) 385.

    Google Scholar 

  10. A. A. Berlin, in “Principles of polymer composites”, edited by G. Henrici-Olive and S. Olive (Springer-Verlag, 1986).

  11. D. M. Bigg, Polym. Comp. 8 (1987) 115.

    Google Scholar 

  12. D. B. Eagles, B. F. Blumentritt and S. L. Cooper, J. Appl. Polym. Sci. 20 (1976) 435.

    Google Scholar 

  13. H. H. Yang, in “Kevlar aramid fiber” (J Wiley, New York, 1992) p. 70.

    Google Scholar 

  14. J. Kalantar and L. T. Drzal, J. Mater. Sci. 25 (1990) 4186.

    Google Scholar 

  15. L. C. Sawyer and M. Jaffe, ibid. 21 (1986) 1897.

    Google Scholar 

  16. R. J. Morgan, C. O. Pruneda and W. J. Steele, J. Polym. Sci. Polym. Phys. 21 (1983) 1757.

    Google Scholar 

  17. M. G. Dobb, D. J. Johnson and B. P. Saville, ibid. 15 (1977) 2201.

    Google Scholar 

  18. U. Plawsky, M. Londschien and W. Michaeli, J. Mater. Sci. 31 (1996) 6043.

    Google Scholar 

  19. G. S. Sheu and S. S. Shyu, Comp. Sci. Technol. 52 (1994) 489.

    Google Scholar 

  20. F. Poncin-Epaillard, B. Chevet and J. C. Brosse, J. Appl. Polym. Sci. 52 (1994) 1047.

    Google Scholar 

  21. G. S. Sheu and S. S. Shyu, J. Adhes Sci. Technol. 8 (1994) 1027.

    Google Scholar 

  22. K. KÜpper and P. Schwartz, ibid. 5 (1991) 165.

    Google Scholar 

  23. H. Salehi-Mobarakey, A. Ait-kadi and J. Brisson, Polym. Eng. Sci. 36 (1996) 779.

    Google Scholar 

  24. N. Tsubokawa and T. Oyanagi, React. Polym. 22 (1994) 47.

    Google Scholar 

  25. P. Lee-Sullivan, K. S. Chian, C. Y. Yue and H. C. Looi, J. Mater. Sci. Lett. 13 (1994) 305.

    Google Scholar 

  26. C. T. Chou and L. S. Penn, J. Adhes. 36 (1991) 125.

    Google Scholar 

  27. F. P. M. Mercx and P. J. Lemstra, Polym. Comm. 31 (1990) 252.

    Google Scholar 

  28. L. S. Penn and B. Jutis, J. Adhes. 30 (1989) 67.

    Google Scholar 

  29. S. L. Tidrick and J. L. Koenig, ibid. 29 (1989) 43.

    Google Scholar 

  30. M. Takayanagi, S. Ueta, W. Y. Lei and K. Koga, Polym. J. 19 (1987) 467.

    Google Scholar 

  31. M. Takayanagi, T. Kajiyama and T. Katayose, J. Appl. Polym. Sci. 27 (1982) 3903.

    Google Scholar 

  32. F. P. M. Mercx PhD thesis, University of Eindhoven, The Netherlands (1996).

    Google Scholar 

  33. B. Takens, PhD thesis, University of Twente, The Netherlands (1997).

    Google Scholar 

  34. R. K. Wells, J. P. S. Badyal, I. W. Drummond, K. S. Robinson and F. J. Street, J. Adhes. Sci. Technol. 7 (1993) 1129.

    Google Scholar 

  35. J. F. Carley and P. T. Kitze, Polym. Eng. Sci. 20 (1980) 330.

    Google Scholar 

  36. H. Steinhauser and G. Ellinghorst, Angew. Makromol. Chem. 120 (1984) 177.

    Google Scholar 

  37. F. Garbassi, E. Occhiello and F. Polato, J. Mater. Sci. 22 (1987) 207.

    Google Scholar 

  38. M. S. Silverstein, O. Breuer and H. Dodiuk, J. Appl. Polym. Sci. 52 (1994) 1785.

    Google Scholar 

  39. M. S. Silverstein and O. Breuer Polymer 34 (1993) 3421.

    Google Scholar 

  40. F. P. M. Mercx, A. Bezina, A. D. Langeveld and P. J. Lemstra, J. Mater. Sci. 28 (1993) 753.

    Google Scholar 

  41. M. S. Silverstein and O. Breuer, ibid. 28 (1993) 4718.

    Google Scholar 

  42. S. B. Bentjen, D. A. Nelson, B. J. Tarasevich and P. C. Rieke, J. Appl. Polym. Sci. 44 (1992) 965.

    Google Scholar 

  43. D. Briggs, D. M. Brewis and M. B. Konieczo, J. Mater. Sci. 11 (1976) 1270.

    Google Scholar 

  44. K. Friedrich, “Friction and wear of polymer composites” (Elsevier, Amsterdam, 1986) p. 240.

    Google Scholar 

  45. Y. Termonia, J. Mater. Sci. Lett. 12 (1993) 732.

    Google Scholar 

  46. Idem, J. Mater. Sci. 25 (1990) 4644.

    Google Scholar 

  47. Idem, ibid., 22 (1987) 504.

    Google Scholar 

  48. D. Hull, in “An introduction to composite materials” (Cambridge University Press, 1981) p. 36.

  49. J. M. HofstÉ, M. J. E. Kersten, J. Van Turnhout and A. J. Pennings, in press.

  50. J. K. Lancaster, J. Appl. Phys. J. Phys. D 1 (1968) 549.

    Google Scholar 

  51. K. Tanaka and S. Kawakami, Wear 79 (1982) 221.

    Google Scholar 

  52. T. A. Blanchet, Tribol. Transact. 38 (1995) 821.

    Google Scholar 

  53. A. Wang, D. C. Sun, C. Stark and J. H. Dumbleton, Wear 181-3 (1995) 241.

    Google Scholar 

  54. J. K. Lancaster, Plast. Polym. 21 (1973) 297.

    Google Scholar 

  55. B. Briscoe, Tribol. Int. 14 (1981) 231.

    Google Scholar 

  56. I. M. Hutchings, “Tribology: friction and wear of engineering materials” (Arnold, Cambridge, 1992) p. 125.

    Google Scholar 

  57. S. R. Holmes-Farley, R. H. Reamey, R. Nuzzo, T. J. Mccarthy and G. M. Whitesides, Langmuir 3 (1987) 799.

    Google Scholar 

  58. S. R. Holmes-Farley and G. M. Whitesides, ACS. Polym. Mater. Sci. Eng. Prepr. 53 (1985) 127.

    Google Scholar 

  59. J. R. Rasmussen, D. E. Bergbreiter and G. M. Whitesides, J. Amer. Chem. Soc. 99 (1977) 4746.

    Google Scholar 

  60. J. Wang, D. Feng, H. Wang, M. Rembold and F. Thommen, J. Appl. Polym. Sci. 50 (1993) 585.

    Google Scholar 

  61. T. Yasuda, M. Miyama and H. Yasuda, Langmuir 8 (1992) 1425.

    Google Scholar 

  62. T. Yasuda, T. Okuno, K. Yoshida and H. Yasuda, J. Polym. Sci. Polym. Phys. 26 (1988) 1781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofste, J., Schut, J. & Pennings, A. The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultra-high molecular weight polyethylene composite. Journal of Materials Science: Materials in Medicine 9, 561–566 (1998). https://doi.org/10.1023/A:1008957324878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008957324878

Keywords

Navigation