Skip to main content
Log in

Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The cellular physiology of the sulphate-reducing bacteria, and of other sulphidogenic species, is determined by the energetic requirements consequent upon their respiratory mode of metabolism with sulphate and other oxyanions of sulphur as terminal electron acceptors. As a further consequence of their, relatively, restricted catabolic activities and their requirement for conditions of anaerobiosis, sulphidogenic bacteria are almost invariably found in nature as component organisms within microbial consortia. The capacity to generate significant quantities of sulphide influences the overall metabolic activity and species diversity of these consortia, and is the root cause of the environmental impact of the sulphidogenic species: corrosion, pollution and the souring of hydrocarbon reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann RI, Stromley J, Devereux R, Key R & Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58: 614–623

    Google Scholar 

  • Badziong W & Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen and sulfate and hydrogen and thiosulfate as sole energy sources. Arch. Microbiol 117: 209–214

    Google Scholar 

  • Barnes LJ, Scheeren PJM & Buisman CJN (1994) Microbial removal of heavy metals and sulphate from contaminated groundwater In: Means JL & Hinchee RE (Eds) Emerging Technology for Bioremediation of Metals (pp 38–49). Lewis Publ., Boca Raton

    Google Scholar 

  • Beeder J, Torsvik T & Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfatereducing bacterium from oil field water. Arch. Microbiol. 164: 331–336

    Google Scholar 

  • Beeder J, Nilsen RK, Thorstenson T & Torsvik T (1996) Penetration of sulfate reducers through a porous North Sea oil reservoir. Appl. Environ. Microbiol. 62: 3551–3553

    Google Scholar 

  • Burger ED, Addington DV & Crews AB (1992) Reservoir souring: bacterial growth and transport. In: Proceedings of the Fourth International IGT Symposium on Gas, Oil and Environmental Biotechnology

  • Canfield DE, Thamdrup B & Hansen JW (1993). The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3883

    Google Scholar 

  • Christensen B, Torsvik T & Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl. Environ. Microbiol. 58: 1244–1248

    Google Scholar 

  • Cochrane WJ, Jones PS, Sanders PF, Holt DM & Mosely MJ (1988) Studies on the thermophilic sulfate-reducing bacteria from a souring North Sea field. SPE Production Eng. 1988: 301–316

    Google Scholar 

  • Colleran E, Finnegan S & Lens P (1995) Anaerobic treatment of sulfate-containing waste streams. A. van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 67: 29–46

    Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D & James G (1994) Minireview: biofilms the customized microniche. J. Bacteriol 176: 2137–2142

    Google Scholar 

  • Cypionka H (1995) Solute transport and cell energetics. In: Barton LL (Ed) Sulfate-Reducing Bacteria (pp 151–184). Plenum Press, New York

    Google Scholar 

  • Dannenberg S, Kroder M, Dilling W & Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compouds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 158: 93–99

    Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K & Stahl DA (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the 'Thermotogales'. System. Appl. Microbiol. 16: 191–200

    Google Scholar 

  • Dilling W & Cypionka H (1990) Aerobic respiration in the sulfate-reducing bacteria. FEMS Microbiol. Lett. 71:123–128

    Google Scholar 

  • Feio MJ, Beech IB, Carepo M, Lopes JM, Cheung CWS, Franco R, Guezenec J, Smith JR, Mitchell JI, Moura JJG & Lino AR (1998) Isolation and characterisation of a novel sulphate-reducing bacterium of the Desulfovibrio genus. Anaerobe. 4: 117–130

    Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213

    Google Scholar 

  • Grassia GS, McLean KM, Glenat P, Bauld J & Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21: 47–58

    Google Scholar 

  • Hamilton WA (1985) Sulphate–reducing bacteria and anaerobic corrosion. Ann. Rev. Microbiol. 39: 195–217

    Google Scholar 

  • ____ (1987) Biofilms: microbial interactions and metabolic activities. Symp. Soc. Gen. Microbiol. 41: 361–385

    Google Scholar 

  • ____ (1991) Sulphate-reducing bacteria and their role in biocorrosion. In: Flemming H-C & Geesey GG (Eds) Biofouling and Biocorrosion in Industrial Water Systems (pp 187–193). Springer-Verlag, Berlin

    Google Scholar 

  • ____ (1998) Sulfate-reducing bacteria: physiology determines their environmental impact. Geomicrobiol. J. 15: 19–28

    Google Scholar 

  • Hamilton WA & Lee W (1995) Biocorrosion. In: Barton LL (Ed) Sulfate-Reducing Bacteria (pp 243–264). Plenum Press, New York

    Google Scholar 

  • Hansen TA (1993) Carbon metabolism of sulfate-reducing bacteria. In: Odom JM & Singleton R (Eds) The Sulfate-Reducing Bacteria: Contemporary Perspectives (pp 21–40). Springer-Verlag, New York

    Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. A. van Leeuwenhoek Int. J. Gen & Mol. Microbiol. 66: 165–185

    Google Scholar 

  • Herbert BN (1987) Reservoir souring. In: Hill EC, Shennan JL & Watkinson RJ (Eds) Microbial Problems in the Offshore Oil Industry (pp 63–71). Instit. Petroleum, London

    Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Phil. Trans. Roy. Soc. Ser B 298: 543–561

    Google Scholar 

  • Lee W, Lewandowski Z, Okabe S, Characklis WG & Avci R (1993a) Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Part I: at low dissolved oxygen concentration. Biofouling 7: 197–216

    Google Scholar 

  • Lee W, Lewandowski Z, Morrison M, Characklis WG, Avci R & Nielsen PH (1993b) Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Part II: at high bulk oxygen concentration. Biofouling 7: 217–239

    Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH & Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8: 165–194

    Google Scholar 

  • Leu J-Y, McGovern-Traa CP, Porter AJR, Harris WJ & Hamilton WA (1998) Identification and phylogenetic analysis by 16 S rDNA gene cloning and sequencing of thermophilic sulfate-reducing bacteria in oil field samples. Anaerobe 4: 165–174

    Google Scholar 

  • Lewandowski Z, Dickinson W & Lee W (1997) Electrochemical interactions of biofilms with metal surfaces. Wat. Sci. Tech. 36: 295–302

    Google Scholar 

  • Lonergan DJ, Jenter HL, Coates JD, Phillips EJP, Schmidt TM & Lovley DR (1996). Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178: 2402–2408

    Google Scholar 

  • Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. Adv. Agronomy 54: 175–231

    Google Scholar 

  • Lovley DR & Phillips EJP (1994) Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl. Environ. Microbiol. 60: 2394–2399

    Google Scholar 

  • Lovley DR & Woodward JC (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370: 128–131

    Google Scholar 

  • McKenzie J & Hamilton WA (1992) The assay of in situ activities of sulphate-reducing bacteria in a laboratory marine corrosion model. Internat. Biodeterior. Biodegrad. 29: 285–297

    Google Scholar 

  • Min H & Zinder SH (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov. Arch Microbiol. 153: 399–404

    Google Scholar 

  • Moosavi AN, Pirrie RS & Hamilton WA (1991) Effect of sulphate-reducing bacteria activity on performance of sacrificial anodes. In: Dowling NJ, Mittleman MW & Danko JC (Eds) Microbially Influenced Corrosion and Biodeterioration (pp 3.13–3.27). National Association of Corrosion Engineers, Washington, DC

    Google Scholar 

  • Moura I, Bursakov S, Costa C & Moura JJG (1997) Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3: 279–290

    Google Scholar 

  • Mueller RF & Nielsen PH (1996) Characterization of thermophilic consortia from two souring oil reservoirs. Appl. Environ. Microbiol. 62: 3083–3087

    Google Scholar 

  • Nazina TN, Ivanov AE, Kanchaveli LP & Rozanova EP (1988) A new spore-forming thermophilic methylotrophic sulfatereducing bacterium Desulfotomaculum kuznetsovii sp nov. Microbiology 57: 659–663

    Google Scholar 

  • Nealson KH, Tebo BM & Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33: 279–318

    Google Scholar 

  • Nealson KH & Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl. Environ. Microbiol. 58: 439–443

    Google Scholar 

  • Nealson KH & Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann. Rev. Microbiol. 48: 311–343

    Google Scholar 

  • Nga DP, Ha DTC, Hien LT & Stan-Lotter H (1996) Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2: 385–392

    Google Scholar 

  • Nielsen PH, Lee W, Lewandowski Z, Morrison M & Characklis WG (1993) Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling 7: 267–284

    Google Scholar 

  • Nilsen RK, Beeder J, Thorstenson T & Torsvik T (1996) Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol 62: 1793–1798

    Google Scholar 

  • Parkes RJ (1987) Analysis of microbial communities within sediments using biomarkers. Symp. Soc. Gen. Microbiol. 41: 147–177

    Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ & Harvey SM (1994) A deep bacterial biosphere in Pacific Ocean sediments. Nature 371: 410–413

    Google Scholar 

  • Peck HD (1993) Bioenergetic strategies of the sulfate-reducing bacteria. In: Odom JM & Singleton R (Eds) The Sulfate-Reducing Bacteria; Contemporary Perspectives (pp 41–76). Springer-Verlag, New York

    Google Scholar 

  • Pfennig N (1984) Microbial behaviour in natural environments. Symp. Soc. Gen. Microbiol. 36: 23–50

    Google Scholar 

  • Postgate JR (1979) The Sulphate-Reducing Bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Rabus R, Fukui M, Wilkes H & Widdel F (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62: 3605–3613

    Google Scholar 

  • Ravot G, Ollivier B, Magot M, Patel BKC, Crolet J-L, Fardeau M-L & Garcia J-L (1995) Thiosulfate reduction, an important physiological feature shared by members of the Order Thermotogales. Appl. Environ. Microbiol. 61: 2053–2055

    Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP & Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45: 85–89

    Google Scholar 

  • Rosnes JT, Torsvik T & Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57: 2302–2307

    Google Scholar 

  • Sanders PF & Tibbetts PJ (1987) Effects of discarded drill muds on microbial populations. Phil. Trans. Roy. Soc. Ser B 316: 567–585

    Google Scholar 

  • Schmitz RA, Bonch-Osmolovskaya EA & Thauer RK (1990) Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans. Arch. Microbiol. 154: 274–279

    Google Scholar 

  • Schwörer B, Breitung J, Klein AR, Stetter KO & Thauer RK (1993) Formylmethanofuran:tetrahydromethanopterin formyltransferase and N5,N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidis: similarities with the enzymes from methanogenic Archaea. Arch. Microbiol. 159: 225–232

    Google Scholar 

  • Sørensen J, Christensen D & Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42: 5–11

    Google Scholar 

  • Stetter KO, Huber R, Blochl E, Kurr M, Eden RD, Fielder M, Cash H & Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743–745

    Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O & Magot M (1996a) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can. J. Microbiol. 42: 259–266

    Google Scholar 

  • Tardy-Jacquenod C, Magot M, Laigret F, Kaghad M, Patel BKC, Guezennec J, Matheron R & Caumette P (1996b) Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int. J. Sys. Bacteriol. 46: 710–715

    Google Scholar 

  • Tatnall R (1991) Case histories: biocorrosion. In: Flemming H-C & Geesey GG (Eds) Biofouling and Biocorrosion in Industrial Water Systems (pp 165–185). Springer-Verlag, Berlin

    Google Scholar 

  • Teske A, Wawer C, Muyzer G & Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62: 1405–1415

    Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on: modifications and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. 176: 497–508

    Google Scholar 

  • Thauer RK & Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. Symp. Soc. Gen.Microbiol. 36: 123–168

    Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Thauer RK, Möller-Zinkhan D & Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann. Rev. Microbiol. 43: 43–67

    Google Scholar 

  • von Wolzogen Kuhr CAH & van der Vlugt LS (1934) The graphitization of cast iron as an electrobiochemical process in anaerobic soils. Water 18: 147–165

    Google Scholar 

  • Voordouw G, Niviere V, Ferris FG, Fedorak PM & Westlake DWS (1990) Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl. Environ. Microbiol. 56: 3748–3754

    Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y & Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate–reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62: 1623–1629

    Google Scholar 

  • Wallrabenstein C, Hauschild E & Schink B (1994) Pure culture and cytological properties of Syntophobacter wolinii. FEMS Microbiol. Lett. 123: 249–254

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 469–585). John Wiley, New York

    Google Scholar 

  • Widdel F & Pfennig N (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112: 119–122

    Google Scholar 

  • ____ (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400

    Google Scholar 

  • Wood HG, Ragsdale SW & Pezacka E (1986) The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth. FEMS Microbiol. Rev. 39: 345–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, W.A. Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9, 201–212 (1998). https://doi.org/10.1023/A:1008362304234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008362304234

Navigation