Skip to main content
Log in

NMR detection of slow conformational dynamics in an endonuclease toxin

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The cytotoxic activity of the secreted bacterial toxin colicin E9 is due to a non-specific DNase housed in the C-terminus of the protein. Double-resonance and triple-resonance NMR studies of the 134-amino acid15 N- and 13C/15N-labelled DNase domain are presented. Extensive conformational heterogeneity was evident from the presence of far more resonances than expected based on the amino acid sequence of the DNase, and from the appearance of chemical exchange cross-peaks in TOCSY and NOESY spectra. EXSY spectra were recorded to confirm that slow chemical exchange was occurring. Unambiguous sequence-specific resonance assignments are presented for one region of the protein, Pro65-Asn72, which exists in two slowly exchanging conformers based on the identification of chemical exchange cross-peaks in 3D 1H-1H-15N EXSY-HSQC, NOESY-HSQC and TOCSY-HSQC spectra, together with Cα and Cβ chemical shifts measured in triple-resonance spectra and sequential NH NOEs. The rates of conformational exchange for backbone amide resonances in this stretch of amino acids, and for the indole NH of either Trp22 or Trp58, were determined from the intensity variation of the appropriate diagonal and chemical exchange cross-peaks recorded in 3D1 H-1H-15N NOESY-HSQC spectra. The data fitted a model in which this region of the DNase has two conformers, NA and NB, which interchange at 15 °C with a forward rate constant of 1.61 ± 0.5 s-1 and a backward rate constant of 1.05 ± 0.5 s-1. Demonstration of this conformational equilibrium has led to a reappraisal of a previously proposed kinetic scheme describing the interaction of E9 DNase with immunity proteins [Wallis et al. (1995) Biochemistry, 34, 13743–13750 and 13751–13759]. The revised scheme is consistent with the specific inhibitor protein for the E9 DNase, Im9, associating with both the NA and NB conformers of the DNase and with binding only to the NB conformer detected because the rate of dissociation of the complex of Im9 and the NA conformer, NAI, is extremely rapid. In this model stoichiometric amounts of Im9 convert, the E9 DNase is converted wholly into the NBI form. The possibility that cis–trans isomerisation of peptide bonds preceding proline residues is the cause of the conformational heterogeneity is discussed. E9 DNase contains 10 prolines, with two bracketing the stretch of amino acids that have allowed the NA ⇋ NB interconversion to be identified, Pro65 and Pro73. The model assumes that one or both of these can exist in either the cis or trans form with strong Im9 binding possible to only one form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjadj, E., Naudat, V., Quiniou, E., Wouters, D., Sautière, P. and Craescu, C.T. (1997) Eur. J. Biochem., 246, 218–227.

    Google Scholar 

  • Bartels, C., Xia, T.-H., Billeter, M., Güntert, P. and Wüthrich, K. (1995) J. Biolmol. NMR, 5, 1–10.

    Google Scholar 

  • Cai, M., Zheng, R., Caffrey, M., Craigie, R., Clore, G.M. and Gronenborn, A.M. (1997) Nat. Struct. Biol., 4, 567–577.

    Google Scholar 

  • Carlomagno, T., Mantile, G., Bazzo, R., Miele, L., Paolillo, L., Mukherjee, A.B. and Barbato, G. (1997) J. Biomol. NMR, 9, 35–46.

    Google Scholar 

  • Chak, K.-F., Kuo, W.-S., Lu, F.-M. and James, R. (1991) J. Gen. Microbiol., 137, 91–100.

    Google Scholar 

  • Chazin, W.J., Kördel, J., Drakenberg, T., Thulin, E., Brodin, P., Grundström, T. and Forsén, S. (1989) Proc. Natl. Acad. Sci. USA, 86, 2195–2198.

    Google Scholar 

  • Cheng, H.N. and Bovey, F.A. (1977) Biopolymers, 16, 1465–1472.

    Google Scholar 

  • Creighton, T.E. (1993) Proteins, Freeman, New York, N.Y.

    Google Scholar 

  • Curtis, M.D. and James, R. (1991) Mol. Microbiol., 5, 2727–2733.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Di Masi, D.R., White, D.C., Schnaitman, C.A. and Bradbeer, C. (1973) J. Bacteriol., 115, 506–513.

    Google Scholar 

  • Eaton, T. and James, R. (1989) Nucleic Acid Res., 17, 1761–1761.

    Google Scholar 

  • Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987). Principles of NMR in One and Two Dimensions, Clarendon Press, Oxford. Pp. 490–501.

    Google Scholar 

  • Evans, P.E., Dobson, C.M., Kautz, R.A., Hartfull, G. and Fox, R.O. (1987) Nature, 329, 266–268.

    Google Scholar 

  • Falzone, C.J., Wright, P.E. and Benkovic, S.J. (1994) Biochemistry, 33, 439–442.

    Google Scholar 

  • Fejzo, J., Westler, W.M., Macura, S. and Markley, J.L. (1991) J. Magn. Reson., 92, 20–29.

    Google Scholar 

  • Feng, Y., Klein, B.K., Vu, L., Aykent, S. and McWherter, C.A. (1995) Biochemistry, 34, 6540–6551.

    Google Scholar 

  • Feng, Y., Klein, B.K. and McWherter, C.A. (1996) J. Mol. Biol., 259, 524–541.

    Google Scholar 

  • Garinot-Schneider, C., Pommer, A.J., Moore, G.R., Kleanthous, C. and James, R. (1996) J. Mol. Biol., 260, 731–742.

    Google Scholar 

  • Grathwohl, C. and Wüthrich, K (1981) Biopolymers, 20, 2623–2633.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992a) J. Magn. Reson., 99, 201–207.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b) J. Am. Chem. Soc., 114, 6291–6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185–204.

    Google Scholar 

  • Hinck, A.P., Loh, S.N., Wang, J. and Markley, J.L. (1990) J. Am. Chem. Soc., 112, 9031–9034.

    Google Scholar 

  • James, R., Curtis, M.D., Wallis, R., Osborne, M.J., Kleanthous, C. and Moore, G.R. (1992). In Bacteriocins, Microcins and Lantibiotics (James, R., Lazdunski, C. and Pattus, F.), NATO ASI Series H, Springer, Heidelberg, pp. 181–201.

    Google Scholar 

  • James, R., Kleanthous, C. and Moore, G.R. (1996) Microbiology, 142, 1569–1580.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Kördel, J., Forsén, S., Drakenberg, T. and Chazin, W.J. (1990) Biochemistry, 29, 4400–4409.

    Google Scholar 

  • Li, W., Dennis, C., Moore, G.R., James, R. and Kleanthous, C. (1997) J. Biol. Chem., 272, 22253–22258.

    Google Scholar 

  • Luria, S.E. and Suit, J.L. (1987) In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, Vol. 2 (Ed., Neidhardt, F.C.) Am. Soc. Microbiol., Washington, DC, pp. 1615–1624

    Google Scholar 

  • Maia, H.L., Orrell, K.G. and Rydon, H.N. (1976) J. Chem. Soc., Perkin Trans 2, 761–763.

    Google Scholar 

  • Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989a) Biochemistry, 28, 6150–6156.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989b) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Ohno-Iwashita, Y. and Imahori, K. (1980) Biochemistry, 19, 652–659.

    Google Scholar 

  • Orrell, K.G., Sik, V. and Stephenson, D. (1990) Prog. NMR Spectrosc., 22, 141–208.

    Google Scholar 

  • Osborne, M.J., Lian, L.-Y., Wallis, R., Reilly, A., James, R., Kleanthous, C. and Moore, G.R. (1994) Biochemistry, 33, 12347–12355. 159

    Google Scholar 

  • Osborne, M.J., Breeze, A.L., Lian, L-Y., Reilly, A., James, R., Kleanthous, C. and Moore, G.R. (1996) Biochemistry, 35, 9505–9512.

    Google Scholar 

  • Osborne, M.J., Wallis, R., Leung, K.-Y., Williams, G., Lian, L.-Y., James, R., Kleanthous, C. and Moore, G.R. (1997) Biochem. J., 323, 823–831.

    Google Scholar 

  • Overduin, M., Tong, K.I., Kay, C.M. and Ikura, M. (1996) J. Biomol. NMR, 7, 173–189.

    Google Scholar 

  • Overmars, F.J.J. and Altona, C. (1997) J. Mol. Biol., 273, 519–524.

    Google Scholar 

  • Palmer, III, A.G., Cavanagh, J., Wright, P.E. and Rance, M. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • Palmer, III, A.G. (1997) Curr. Opin. Struct. Biol., 7, 732–737.

    Google Scholar 

  • Pommer, A.J., Wallis, R., Moore, G.R., James, R. and Kleanthous, C. (1998) Biochem. J., submitted.

  • Schaller, K. and Nomura, M. (1976) Proc. Natl. Acad. Sci. USA, 73, 3989–3993.

    Google Scholar 

  • Schmid, F.X. and Baldwin, R.L. (1978) Proc. Natl. Acad. Sci. USA, 75, 4764–4768.

    Google Scholar 

  • States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • Steinberg, I.Z., Harrington, W.F., Berger, A., Sela, M. and Katchalski, E. (1960) J. Am. Chem. Soc., 82, 5263–5279.

    Google Scholar 

  • Thomas, W.A. and Williams, M.K. (1972) J. Chem. Soc., Chem. Commun., 994.

  • Toba, M., Masaki, H. and Ohta, T. (1988) J. Bacteriol., 170, 3237–3242.

    Google Scholar 

  • Truckses, D.M., Somoza, J.R., Prehoda, K.E., Miller, S.C. and Markley, J.L. (1996) Protein Sci., 5, 1907–1916.

    Google Scholar 

  • Wallis, R., Moore, G.R., Kleanthous, C. and James, R. (1992a) Eur. J. Biochem., 210, 923–930.

    Google Scholar 

  • Wallis, R., Reilly, A., Rowe, A., Moore, G. R., James, R. and Kleanthous, C. (1992b) Eur. J. Biochem., 207, 687–695.

    Google Scholar 

  • Wallis, R., Reilly, A., Barnes, K., Abell, C., Campbell, D.G., Moore, G.R., James, R. and Kleanthous, C. (1994) Eur. J. Biochem., 220, 447–454.

    Google Scholar 

  • Wallis, R., Leung, K.-Y., Pommer, A.J., Videler, H., Moore, G.R., James, R. and Kleanthous, C. (1995a). Biochemistry, 34, 13751–13759.

    Google Scholar 

  • Wallis, R., Moore, G.R., James, R. and Kleanthous, C. (1995b) Biochemistry, 34, 13743–13750.

    Google Scholar 

  • Wallis, R., Leung, K.-Y., Osborne, M.J., James, R., Moore, G.R. and Kleanthous, C. (1998) Biochemistry, in press.

  • Willem, R. (1987) Prog. NMR Spectrosc., 20, 1–94.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, N.Y.

    Google Scholar 

  • Zhang, O.W., Kay, L.E., Olivier, J.P. and Forman-Kay, J.D. (1994) J. Biomol. NMR, 4, 845–858.

    Google Scholar 

  • Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405–410.

    Google Scholar 

  • Zuiderweg, E.R.P. and Fesik, S. (1989) Biochemistry, 28, 2387–2391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittaker, S.BM., Boetzel, R., MacDonald, C. et al. NMR detection of slow conformational dynamics in an endonuclease toxin. J Biomol NMR 12, 145–159 (1998). https://doi.org/10.1023/A:1008272928173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008272928173

Navigation