Skip to main content
Log in

Bovine serum albumin-hemoglobin fractionation: significance of ultrafiltration system and feed solution characteristics

  • Published:
Bioseparation

Abstract

This work investigates the fractionation of similar molecular weight proteins bovine serum albumin (69 kD) and bovine hemoglobin (67 kD) by ultrafiltration. Three different membranes, viz. regenerated cellulose, poly(sulfone) and surface modified poly(acrylonitrile), each with a nominal molecular cutoff rating of 100 kD, were examined. The experiments were conducted in dead end, crossflow and vortex flow filtration modes and the separation was studied as a function of feed pH and ionic strength. Under similar system hydrodynamics, the surface modified poly(acrylonitrile) membrane displayed the highest resolution with minimum membrane fouling. The separation could be improved further by operating at low applied pressure (40 kPa) and high mass transfer (> 20 × 10−6 m/s) in a vortex flow module. Under these conditions, the highest separation factor of 40 was obtained at the pI of hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal GP (1997) Analysis of protein transmissions in vortex flow ultrafilter for mass transfer coefficient. J. Membrane Sci. 136: 141-151.

    Google Scholar 

  • Balakrishnan M and Agarwal GP (1996a) Protein fractionation in a vortex flow filter I: Effect of system hydrodynamics and solution environment on single protein transmission. J. Membrane Sci. 112: 47-74.

    Google Scholar 

  • Balakrishnan M and Agarwal GP (1996b) Protein fractionation in a vortex flow filter II: Separation of simulated mixtures. J. Membrane Sci. 112: 75-84.

    Google Scholar 

  • Bellara SR, Cui ZF and Pepper DS (1997) Fractionation of BSA and Lysozyme using Gas-Sparged Ultrafiltration in Hollow Fiber Membrane Modules. Biotechnol. Prog. 13: 869-872.

    Google Scholar 

  • Bowen WR and Clark RA (1984) Electro-osmosis at microporous membranes and the determination of zeta-potential. J. Colloid and Interface Sci. 97: 401-409.

    Google Scholar 

  • Cherkasov AN and Polotsky AE (1996) The resolving power of ultrafiltration. J. Membrane Sci. 110: 79-82.

    Google Scholar 

  • Cheryan M (1998) Ultrafiltration and Microfiltration Handbook. Technomic Publishing Inc., Lancaster, PA.

    Google Scholar 

  • Ehsani N and Nyström M (1995) Fractionation of BSA and myoglobin with modified and unmodified ultrafiltration membranes. Bioseparation 5: 1-10.

    Google Scholar 

  • Ghosh R and Cui ZF (1998a) Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment. J. Membrane Sci. 139: 17-28.

    Google Scholar 

  • Ghosh R and Cui ZF (1998b) Fractionation of BSA and lysozyme using ultrafiltration: Effect of gas sparging. AIChE J. 44: 61-67.

    Google Scholar 

  • Higuchi A, Ishida Y and Nakagawa T (1993) Surface modified polysulfone membranes: Separation of mixed proteins and optical resolution of tryptophan. Desalination. 90: 127-136.

    Google Scholar 

  • Higuchi A, Mishima S and Nakagawa T (1991) Separation of proteins by surface modified polysulfone membranes. J. Membrane Sci. 57: 175-185.

    Google Scholar 

  • Hodgins LT and Samuelson E (1990) Hydrophilic article and method of producing same. US Patent 4,906,379.

  • Iritani E, Mukai Y and Murase T (1995) Upward dead-end UF of binary protein mixtures, Sep. Sci. Tech. 30: 369-382.

    Google Scholar 

  • Iritani E, Mukai Y and Murase T (1997) Separation of binary protein mixtures by ultrafiltration. Filtr. Sep. 34: 967-973.

    Google Scholar 

  • Jucker C and Clark MM (1994) Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. J. Membrane Sci. 97: 37-52.

    Google Scholar 

  • Ko MK and Pellegrino JJ (1992) Determination of osmotic pressure and fouling resistances and their effects on the performance of UF membranes. J. Membrane Sci. 74: 141-157.

    Google Scholar 

  • Koehler JA, Ulbricht M and Belfort G (1997) Intermolecular forces between proteins and polymer films with relevance to filtration. Langmuir 13: 4162-4171.

    Google Scholar 

  • Lentsch S, Aimar P and Orozco JL (1993) Separation albumin-PEG: Transmission of PEG through UF membranes. Biotechnol. Bioeng. 41: 1039-1047.

    Google Scholar 

  • Li Q and Pepper DS (1997) Fractionation of HSA and IgG by gas sparged ultrafiltration. J. Membrane Sci. 136: 181-190.

    Google Scholar 

  • Mazid MA (1988) Separation and fractionation of macromolecular solutions by ultrafiltration. Sep. Sci. Tech. 23: 2191-2210.

    Google Scholar 

  • Millesime L, Dulieu J and Chaufer B (1996) Fractionation of proteins with modified membranes. Bioseparation 6: 135-145.

    Google Scholar 

  • Mukai Y, Iritani E and Murase T (1998) Fractionation characteristics of binary protein mixtures by ultrafiltration. Sep. Sci. Tech. 33: 169-185.

    Google Scholar 

  • Musale DA and Kulkarni SS (1997) Relative rates of protein transmission in poly (acrylonitrile) based ultrafiltration membranes. J. Membrane Sci. 136: 13-23.

    Google Scholar 

  • Nabe A, Staude E and Belfort G (1997) Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J. Membrane Sci. 133: 57-72.

    Google Scholar 

  • Najarian S and Bellhouse BJ (1996) Effect of liquid pulsation on protein fractionation using ultrafiltration processes. J. Membrane Sci. 114: 245-253.

    Google Scholar 

  • Nakao S, Osada H, Kurata H, Tsuru T and Kimura S (1988) Separation of proteins by charged ultrafiltration membranes. Desalination 70: 191-205.

    Google Scholar 

  • Nakatsuka S and Michaels A (1992) Transport and separation of proteins by ultrafiltration through sorptive and non-sorptive membranes. J. Membrane Sci. 69: 189-211.

    Google Scholar 

  • Nel RG, Oppenheim SF and Rodgers VGJ (1994) Effects of solution properties on solute and permeate flux in BSA-IgG ultrafiltration. Biotechnol. Prog. 10: 539-542.

    Google Scholar 

  • Palecek SP and Zydney AL (1994) Hydraulic permeability of protein deposits formed during microfiltration: effect of solution pH and ionic strength. J. Membrane Sci. 95: 71-81.

    Google Scholar 

  • Saksena S and Zydney AL (1994) Effect of solution pH and ionic strength on the separation of albumin from immunoglobulins (IgG) by selective filtration. Biotech. Bioeng. 43: 960-968.

    Google Scholar 

  • Sheldon JM, Reed IM and Hawes CR (1991) Fine structure of ultrafiltration membranes. II. Protein fouled membranes. J. Membrane Sci. 62: 87-102.

    Google Scholar 

  • Shukla R (1996) Studies on fractionation of similar molecular weight proteins by ultrafiltration. MS Thesis, Indian Institute of Technology, New Delhi, India.

  • Sudareva NN, Rudnitskaya GE and Reifman LS (1983) Study of the effect of pH value on parameters of the ultrafiltration of protein solutions, Inst. Anal. Priborostr. Nauchno-Tekh. 56: 118-121.

    Google Scholar 

  • Sudareva NN, Kurenbin OI and Belenkii BG (1992) Increase in the efficiency of membrane fractionation. J. Membrane Sci. 68: 263-270.

    Google Scholar 

  • Suki A, Fane AG and Fell CJD (1984) Flux decline in protein ultrafiltration. J. Membrane Sci. 21: 269-283.

    Google Scholar 

  • van Eijndhoven RHCM, Saksena S and Zydney AL (1995) Protein fractionation using electrostatic interactions in membrane filtration, Biotech. Bioeng. 48: 406-414.

    Google Scholar 

  • van Reis R, Gadam S, Frautschy LN, Orlando S, Goodrich EM, Saksena S, Kuriyel R, Simpson CM, Pearl S and Zydney AL (1997a) High performance tangential flow filtration. Biotech. Bioeng. 56(1): 71-82.

    Google Scholar 

  • van Reis R, Goodrich EM, Yson CL, Frautschy LN, Whiteley R, Zydney AL (1997b) Constant Cwall ultrafiltration process control. J. Membrane Sci. 130: 123-140.

    Google Scholar 

  • Vilker VL, Colton CK. Smith KA and Green DL (1981) Osmotic pressure of concentrated protein solutions: Effects of concentration and pH in saline solutions of bovine serum albumin. J. Membrane Sci. 20: 63-77.

    Google Scholar 

  • Yang MC and Tong JH (1997) Loose ultrafiltration of proteins using hydrolyzed polyacrylonitrile hollow fiber. J. Membrane Sci. 132: 63-71.

    Google Scholar 

  • Zeman LJ and Zydney AL (1996) Microfiltration and Ultrafiltration: Principles and Applications. Marcel Dekker Inc., New York, NY.

    Google Scholar 

  • Zhang L and Spencer HG (1993) Selective separation of protein by microfiltration with formed-in-place membranes. Desalination. 90: 137-146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, R., Balakrishnan, M. & Agarwal, G.P. Bovine serum albumin-hemoglobin fractionation: significance of ultrafiltration system and feed solution characteristics. Bioseparation 9, 7–19 (2000). https://doi.org/10.1023/A:1008194300403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008194300403

Navigation