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Abstract

The production of recombinant proteins using mammalian cell expression systems is of growing importance within
biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications
of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression
system. Glutamine synthetase catalyses the formation of glutamine from glutamate and ammonia. NS0 cells contain
extremely low levels of endogenous glutamine synthetase activity, therefore exogenous glutamine synthetase can
be used efficiently as a selectable marker to identify successful transfectants in the absence of glutamine in the
media. In addition, the inclusion of methionine sulphoximine, an inhibitor of glutamine synthetase activity, enables
further selection of those clones producing relatively high levels of transfected glutamine synthetase and hence any
heterologous gene which is coupled to it. The glutamine synthetase system technology has been used for research
and development purposes during this decade and its importance is clearly demonstrated now that two therapeutic
products produced using this system have reached the market place.

Abbreviations:cAMP, cyclic adenosine monophosphate; CHO, Chinese Hamster Ovary; DHFR, dihydrofolate
reductase; ECACC, European Collection of Animal Cell Cultures; FEM, Fortified Eagles Media; GS, glutamine
synthetase; hCMV, human cytomegalovirus; MOPC21, mineral oil induced plasmacytoma accession number 21;
MSX, methionine sulphoximine; SV40, simian virus 40.

Introduction

The drive to produce greater quantities of recombin-
ant proteins of the correct fidelity for therapeutic use
has led to major advances in heterologous expres-
sion systems. Largely due to the absolute requirement
for correct post-translational modifications and pro-
cessing, mammalian cells are commonly used (Page,
1988). However, the efficiency with which DNA is
taken up into mammalian cells varies between dif-
ferent cell types (Kucherlapati and Skoultchi, 1984)
and a method of selecting for cells which have taken
up and stably express the DNA of interest is benefi-

cial. A range of biochemical selectable markers, some
of which also allow amplification of the exogenous
DNA in response to a toxic drug, have been developed.
The industrial production of many commercially valu-
able proteins focuses largely on two such markers,
dihydrofolate reductase (DHFR) (Page and Syden-
ham, 1991) and glutamine synthetase (GS) (Cockett
et al., 1990). DHFR is a non-dominant marker and
hence is best used in cells which lack any endogen-
ous DHFR. For most cell lines this generally means
producing DHFR minus mutants such as the DHFR−
Chinese Hamster Ovary (CHO) cell line, CHO-DUK
(Urlaub and Chasin, 1980). GS can act as a dom-
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inant selectable marker and hence can theoretically
be used in cells which contain an active endogen-
ous GS gene (Bebbington and Hentschel, 1987), as
well as cells which are endogenous GS minus. It is
most commonly used in CHO cells and NS0 (Non-
secreting) myeloma cells. Using the GS system only a
single round of amplification, taking typically around
3 months, is often sufficient to result in efficient levels
of recombinant protein expression (Bebbington et al.,
1992) and in a lot of cases amplification is not neces-
sary at all. However, multiple rounds of amplification
are needed with the DHFR system to achieve similar
levels of expression and this can increase develop-
ment time up to around 6 months (Dorai and Moore,
1987). In addition, the GS system usually requires
fewer copies of the selectable marker and recombinant
protein to obtain efficient levels of production than the
DHFR system does. Typically between 4–10 copies
are found per cell for the GS system after amplific-
ation (Bebbington et al., 1992; Brown et al., 1992)
compared to several hundred copies for the DHFR
system (Kaufman et al., 1985; Kingston et al., 1994).
Also, accumulation of final product has been reported
to be around five times more efficient for the GS sys-
tem compared to the DHFR system (Hodgson, 1993).
Due to these reasons, and production levels obtained,
the GS expression system is today generally regarded
as a high yielding system for the rapid production of
recombinant proteins.

The GS system has been used extensively in CHO
cells (Table 1). However the myeloma NS0 cells are
often favoured as, unlike CHO cells, these cells con-
tain such low levels of GS that phenotypically they
are GS minus (Bebbington et al., 1992). Hence, as
will be described later, this means they require a lower
level of toxic drug to allow selection of cells express-
ing high levels of exogenous gene. The efficiency
of production in NS0 cells is thought to be due to
the fact that NS0 cells were originally derived from
immunoglobulin-producing tumour cells and are well
equipped for producing and secreting proteins. An-
other advantage of using myeloma cells is that they are
suspension cells that can be adapted to grow in serum-
free, protein-free culture to high biomass in fermenters
which is particularly beneficial in industry (Broad et
al., 1991). Finally it is also worth noting the genomic
plasticity of CHO cells, which may lead to instability
of production, as has been noted for the CHO-DHFR
system (Pallavicini et al., 1990).

The GS technology was developed by scientists
at Celltech and Lonza Biologics (formally known

as Celltech Biologics). The technology, in particular
the GS-NS0 system, is most commonly used within
the biotechnology industry and recently therapeutic
products produced using the GS-NS0 system have
been licensed for the market place. This paper aims
to review the GS-NS0 expression system by consider-
ation of the history and nutritional requirement of the
cell line, the principles of the GS system which make it
so successful and its use for the production of proteins
for both research and therapeutic purposes.

NS0 cell history

The discovery by Potter and Boyce in 1962 that in-
jection of mineral oil into the intraperitoneal region of
BALB/c mice induced plasma-cell neoplasms was the
starting point for the development of the NS0 cell line
(Potter and Boyce, 1962). The histology of the devel-
opment of these plasmacytomas was later detailed in
1964 (Potter and MacCardle, 1964). The sequence of
events which led to the development of this cell line
are represented in Figure 1.

Tumours were induced within inbred BALB/c fe-
male mice by the Animal Production Unit of the
National Institute of Health, U.S.A. One such tumour,
MOPC21 (mineral oil induced plasmacytoma, acces-
sion number 21), was found to secrete IgG1 (Potter et
al., 1965) and Horibata and Harris then went on to use
this tumour to establish a continuous tissue culture line
(Horibata and Harris, 1970). Initially, the MOPC21
tumour cells were cultured in Fortified Eagles Media
(FEM) supplemented with 20% horse serum which
resulted in a population with a doubling time of 7 days.
Subsequently, the cells were maintained as ascites in
mice before re-culture in FEM media supplemented
with 10% horse serum. After a few weeks of culture,
the cell doubling time was decreased to 16 hours and
during a subsequent 3 years period of stationary cul-
ture the cells maintained this doubling time (Horibata
and Harris, 1970). This heterogeneous population of
cells, which grew in suspension, were called P3K
cells. The P3K cells, which were shown to synthesize
and secrete IgG1 (Horibata and Harris, 1970), were
then cloned and gave rise to P3-X27, a clone that also
secreted IgG1 (Ramasamy et al., 1974). Subsequent
re-cloning of P3-X27 gave rise to two cell lines, 289–
16 and P3-X63, which were developed separately
(Ramasamy et al., 1974).

The 289–16 cell line did not secrete IgG1, syn-
thesizing the light chain but no heavy chain. At this
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Table 1. Examples of Recombinant Protein Expression Using the GS System in NS0 and CHO cells

Products References

GS-NS0 GS-CHO

Antibodies (murine and
humanised)

Field et al., 1991; Bebbington et al., 1992; Brown
et al., 1992; Hassell et al., 1992; Birch et al.,
1993; Sims et al., 1993; Bibila et al., 1994a, b;
Birch and Froud 1994; Peakman et al., 1994;
Robinson et al., 1994a, b, c; Yoon and Kon-
stantinov, 1994; Yu Ip et al., 1994; Ellis et al.,
1995; Lifely et al., 1995; King et al., 1995;
Pearce et al., 1995; Robinson et al., 1995; Steph-
ens et al., 1995; Young et al., 1995; DiStefano et
al., 1996; Downham et al., 1996; Keen and Hale,
1996; Konstantinov, 1996; Anon, 1997; Duncan
et al., 1997; Johnson et al., 1997; Pilson et al.,
1997; Ray et al., 1997; Reimann et al., 1997;
Zhou et al., 1997; Lonza Press Release, 1998;
Paterson et al., 1998.

Bebbington, 1991; Owens et al., 1991; Brown et
al., 1992; Hassell et al., 1992; Birch et al., 1993;
King et al., 1993; Burton et al., 1994; Ortlepp et
al., 1995.

Protease and Inhibitors Murphy et al., 1991a, b, 1992a, b; Gofton et
al., 1992; O’Shea et al., 1992; Nguyen et al.,
1993; Willenbrock et al., 1993; Apte et al., 1995;
Knäuper et al., 1996; Baker et al., 1997.

Field et al., 1989; Cockett et al., 1990; Jenkins
and Hovey, 1993a, b; Hovey et al., 1994a, b.

Cytokine, Hormones and
Growth Factors

Hirayama et al., 1994; Rossmann et al., 1996;
Zhou et al., 1996; Cannon-Carlson et al., 1998.

McKnight and Classon, 1992;, McInnes et al.,
1993; Castro et al., 1995; Morrison et al., 1995;
Kim et al., 1997; Orlinick et al., 1997; Salas et
al., 1997.

Cell Surface Markers and
Receptors

Robinson et al., 1992; Flesher et al., 1995; Tan
et al., 1995; Rhode et al., 1996; Hamilton et al.,
1997; Shi et al., 1997.

Moore et al., 1989; Williams et al., 1989; Davis
et al., 1990; Froud et al., 1991; Classon et al.,
1992; Gastinel et al., 1992; Gjörloff et al., 1992;
Gloor et al., 1992; Harfst et al., 1992a, b, c;
Harfst and Johnstone 1992; McCall et al., 1992;
Trowbridge et al., 1992; Ashford et al., 1993;
Davis et al., 1993; Feany et al., 1993; Gutman
et al., 1993; Kemble et al., 1993; Quilliam et al.,
1993; Van der Merwe et al., 1993; Brown and
Barclay, 1994; Crouch et al 1994; Fahnestock et
al., 1994; Lange et al., 1994; Skonier et al., 1994;
Berg et al., 1995; Cosgrove et al., 1995; Fahne-
stock et al., 1995; Guerini et al., 1995; Siemers
et al., 1997; Haumont et al., 1996; McAlister et
al., 1998a, b; Pu et al., 1998; Stanley and Hogg
1998.

Intracellular Proteins Murray et al., 1996. Cockett et al., 1991; Laubach et al., 1996.

Other Blochberger et al., 1997.

stage the cell line was renamed NSI/1 (Cowan et al.,
1974) and clones from this cell line, which were res-
istant to 8-azaguanine, were isolated, one of which
also expressed only intracellularκ light chains. This
cell line, called P3/NSI/1-Ag4-1 (Köhler et al., 1976),

was cloned once more to generate a subline which
did not secrete or synthesize heavy or light chains
of Ig and hence this murine myeloma cell line was
named NS0/1 (Non-Secreting) cells (Galfrè and Mil-
stein, 1981). Table 2 summarizes the immunoglobulin
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Figure 1. Historical development of the NSO cell line.

production from cell lines generated during the de-
velopment of the NS0 cell line and, where relevant,
catalogue numbers from the European Collection of
Animal Cell Cultures (ECACC).

Myeloma cells are known to be efficient fusion

partners for the production of hybrids (Köhler and
Milstein, 1975, 1976). As a consequence, NS0 cells
have been used for a number of years as fusion part-
ners for the production of hybridoma cells producing
monoclonal antibodies (Cazzola et al., 1992; Cloeck-
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Table 2. Cell lines generated during the development of the NS0 cell line

Cell line Description of Ig ECACC number

Production (where appropriate)

MOPC21 Secretes IgG1 -

P3K Secretes IgG1 -

P3-X27 Secretes IgG1 -

P3-X63 Secretes IgG1 -

P3-X63Ag8 Secretes IgG1 85011401

289/16 (NSI/1) Non-secreting, synthesises lightκ chain -

P3/NSI/1-Ag4-1 Non-secreting, synthesises lightκ chain 85011427

NS0 Non-secreting, non-synthesising 85110503

Figure 2. Production of glutamine by glutamine synthetase.

aert et al., 1992; Lyaku et al., 1992; Richards et al.,
1992; Zumla et al., 1992; Cloeckaert et al., 1993;
Thole and Jakob, 1993; Porro et al., 1994; Green
et al., 1995; Ghebrehiwet et al., 1996). However,
NS0 cells are now an important host cell for the en-
gineered production of recombinant proteins in their
own right, particularly in combination with the GS
selection system.

Glutamine and glutamine synthetase (GS): their
importance to cell metabolism

The cellular metabolism and function of glutamine is
of crucial importance to mammalian cells. It is a non-
essential amino acid and hence is synthesised by a
large variety of cells and its role within cells is con-
siderable. For example, it is significant in nitrogen

metabolism as it provides a source of nitrogen for
many biosynthetic pathways. Glutamine is important
in protein synthesis, purine and pyrimidine biosyn-
thesis, ammonia formation, the biosynthesis of amino
acids, amino sugars and certain cofactors and also
for the degradation of amino acids, as well as cer-
tain special processes such as phenylacetyl-glutamine
formation (Meister, 1974, 1980). In addition, the stor-
age and transport of glutamate and ammonia, as well
as the removal of ammonia, all revolve around this
amino acid. It is also important to stress that the carbon
chain of glutamine can serve as a significant energy
source for cells (Reitzer et al., 1979; Zielke et al.,
1980).

The enzymatic synthesis of glutamine is reversible
(Levintow and Meister, 1954) and requires hydrolysis
of ATP (Speck, 1947, 1949; Elliott, 1948, 1951). The
reaction is catalyzed by the enzyme GS (Figure 2),
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which is a universal housekeeping enzyme that con-
sists of between 8–12 sub-units. These can range
from 42,000–50,000Da. each depending on the source
(Meister, 1980; Pu and Young, 1989); however, there
is a high degree of sequence homology between mam-
malian GS forms (Meister, 1974).

The mechanism of the GS-catalyzed formation
of glutamine has been suggested to occur via a
γ -glutamyl phosphate enzyme-bound intermediate
(Todhunter and Purich, 1975; Midelfort and Rose,
1976), with glutamate being phosphorylated before
reacting with ammonia to form glutamine. The am-
monia group which reacts with glutamate is provided
by asparagine. The full mechanism of action of GS is
detailed by Meister (Meister, 1974).

Glucocorticosteriods, insulin and cAMP are
among the regulatory signals that are known to affect
GS levels (Crook et al., 1978; Miller et al., 1978).
Also the specific activity of GS in certain cell lines is
inversely proportional to the level of glutamine present
with glutamine regulating glutamine synthetase at the
post-transcripitional level (Feng et al., 1990).

The importance of glutamine to cell survival (But-
ler and Jenkins, 1989) and the very low levels of endo-
genous GS expression within NS0 cells (Bebbington
et al., 1992) means these cells have an absolute re-
quirement for exogenous glutamine. This feature has
facilitated the use of GS as a biochemical selectable
marker.

The principles of the GS-NS0 system

The GS-NS0 system relies on the fact that cells con-
taining very low levels of endogenous GS, when
grown in glutamine-free media, require either an exo-
genous source of glutamine or exogenous GS in order
to survive. This is due to the extremely low frequency
of generation of natural glutamine-independent cell
variants, for example in the case of NS0 cells less
than 1 in 107 (Bebbington et al., 1992). The incor-
poration of a GS gene in a plasmid vector containing
the gene of a heterologous protein allows selection
of cells, in glutamine-free media, that have taken up
the plasmid during transfection and are stably express-
ing the GS gene and hence the heterologous protein.
The construction of the plasmid vector can have a
great influence on productivity. The GS coding se-
quence is usually under the control of a weak promoter
(e.g. SV40), however the heterologous protein coding
sequence(s) is often under the control of a power-

ful hCMV promoter (Brown et al., 1992; Keen and
Hale, 1996) (Figure 3). This theoretically ensures that
successful transfectants, surviving in glutamine-free
media using the weakly-transcribed GS gene, should
produce reasonable levels of heterologous protein due
to the powerful hCMV promoter. To minimise pro-
moter occlusion (Kadesch and Berg, 1986; Proudfoot,
1986) the GS sequence can be placed upstream of the
recombinant gene (Bebbington et al., 1992).

Generally, the number of plasmid vectors taken
up by a cell is low, typically only 1 copy per cell
(Brown et al., 1992). However, the GS gene, as well
as allowing selection of cells that have taken up the
vectors, also allows selection of clones which have
high GS expression levels. These high levels may
be a result of relatively few copies of the transfec-
ted GS gene integrating into particularly active sites
within the host cell DNA or of several copies of the
GS gene at less active sites. Selection of high GS
expressing cells may also be achieved using Methion-
ine Sulphoximine (MSX), which is a specific inhibitor
of GS activity (Brown et al., 1992). For the GS-
NS0 system the copy number usually increases from
1 to 4–10 copies per cell (Bebbington et al., 1992;
Brown et al., 1992). In addition, increase in GS gene
copy number as a result of gene amplification caused
by increased levels of MSX has been noted (Stark
and Wahl, 1984; Bebbington and Hentschel, 1987;
Simonsen and McGrogan, 1994). Any gene that is
co-transfected with this GS-amplifiable marker, such
as a recombinant heterologous protein, will be amp-
lified simultaneously. This leads to an increase in the
production level of the heterologous protein due to an
increase in its mRNA levels and this in turn is caused
by amplification of the copy number of its gene.

The irreversible inhibition of GS by MSX is a
result of MSX being phosphorylated by GS. It oc-
curs in the presence of ATP and divalent metal ions.
The structure of MSX and its phosphorylated form
is given in Figure 4. The mechanism of this inhibi-
tion has been extensively studied (Ronzio and Meister,
1968; Manning et al., 1969; Ronzio et al., 1969; Rowe
et al., 1969; Rowe and Meister, 1973) and MSX is
considered to be an inhibitory analog of the inter-
mediate formed in the normal GS catalyzed reaction.
During the reaction the sulfoximine nitrogen of MSX
occupies the same site in GS as the oxygen of phos-
phorylated glutamate. Only the L, S-isomer of MSX
is phosphorylated on the sulfoximine nitrogen to give
MSX phosphate (Manning et al., 1969) and this can
then bind to GS irreversibly in the presence of ADP
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Figure 3. A typical expression vector used with the GS-NSO expression system for the production of multisubunit proteins such as
immunoglobulins.

Figure 4. Structure of a) glutamine, b) MSX, c) MSX Phosphate.
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and hence block subsequent GS activity.
Due to negligible endogenous GS activity in NS0

cells, concentrations of 10–100µM MSX are typically
used and further selection in higher levels of MSX
does not appear to increase productivity or copy num-
ber of the recombinant gene (Bebbington et al., 1992;
Brown et al., 1992). This level of MSX is low com-
pared to levels required in GS-CHO systems which
range between 250–500µM MSX due to endogenous
GS present within CHO cells (Cockett et al., 1990;
Bebbington et al., 1992).

The GS-NS0 system has been reported to be stable
in terms of antibody production in suspension culture
for at least 65 generations in the absence of MSX
(Bebbington et al., 1992). Removal of MSX, once
amplification is achieved, eliminates the need to as-
say for MSX in the final product and reduces the cost
and any possible toxic effects on the cells. However,
reports concerning the CHO-DHFR system have sug-
gested that the removal of selective pressure generated
by the presence of toxic drugs can lead to instability
(Weidle et al., 1988).

Product optimisation: the importance of culture
conditions

The nutritional requirements of NS0 cells are im-
portant factors relating to optimisation of cell growth
and productivity. There is little detailed information
available in the literature on specific requirements
for GS-NS0 cell lines as this work is largely per-
formed within an industrial context. Such information
is therefore a closely guarded secret as the deriva-
tion of the best media for productivity and growth
is something which can be both time consuming and
costly. However, some generalities can be made about
the requirement of the cell line as a whole. Due to
safety, cost, consistency, efficiency and regulatory
approval, industrial companies favour the growth of
these cells in serum-free media (Broad et al., 1991).
Also, protein-free media is beneficial due largely to
purification considerations.

NS0 cells are cholesterol auxotrophs (Keen and
Steward, 1995), although reports of some cholesterol-
independent variants have been noted (Birch et al.,
1994; Keen and Steward, 1995). However, generally
for the successful growth of these cells cholesterol
has to be included in media. Due to the low solubil-
ity of cholesterol in aqueous solution, this is usually
achieved in the form of complex protein solutions.

It has been reported that addition of phosphatidyl-
choline: cholesterol vesicles with the carbohydrate
carrier cyclodextrin to the media aids growth (Keen
and Hale, 1996). However, adverse effects on cell
viability have been noted when using cholestrol con-
taining vesicles, for example due to lipid precipitation
which can cause an increase in cell death (Keen and
Hale, 1996).

The nutritional requirements of wild-type NS0
and NS0 cells transfected with GS-containing vec-
tors have been noted to differ widely (Gould et al.,
1992; Robinson et al., 1994a). Wild-type NS0 cells
contain extremely low levels of GS activity, a feature
which the GS system exploits. Thus, whereas wild-
type NS0 cells need to be cultured in media which
contains glutamine, NS0 cell lines transfected with
GS-containing vectors no longer have this requirement
and can survive without exogenous glutamine in the
media by utilizing more glutamate and asparagine.
GS-NS0 cells produce low levels of lactate and hardly
any ammonia when grown in glutamine-free media
(DiStefano et al., 1996). Asparagine is thought to be
used by these cells as a metabolic source of ammonia,
which is combined with glutamate to produce glutam-
ine using the GS catalyzed reaction (Figure 2). The
requirement for asparagine has been suggested to be
due to the possible defects of alternative ammonia pro-
ducing pathways within myeloma cells (Bebbington et
al., 1992).

Recent characterisation of the nutrient require-
ments of wild-type and transfected NS0 cells has
arisen from analysis of the effects of nutrient depriva-
tion in causing or enhancing death by apoptosis (Mer-
cille and Massie, 1994; Robinson et al., 1994a; Di-
Stefano et al., 1996). The exact feeding strategy and
conditions of culture are specific for each cell line
(Robinson et al., 1994a), however successful nutrient
control has been noted to increase monoclonal anti-
body productivity substantially in GS-NS0 cell lines
sometimes by up to 10-fold (Robinson et al., 1994a).
During batch culture of recombinant GS-NS0 cells as-
paragine, cystine, histidine, isoleucine, methionine,
valine and, in particular, glutamate and leucine have
been noted to be rapidly depleted (Keen and Hale,
1996). However amino acid consumption rates can
vary depending on cellular growth state (Robinson et
al., 1994a). Medium osmolarity has also been reported
to affect NS0 cell growth and secretion of products,
and culture under certain hyperosmotic conditions can
potentially increase productivity of the cells (Bibila et
al., 1994a; Duncan et al., 1997).
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Therefore it is clear that maintaining these cells in
a viable productive state for extended periods of time
can be achieved to some degree by the optimization of
culture conditions and this can often lead to substantial
increases in productivity.

Products generated using the GS-NS0 system

As indicated in Table 1, a range of products have now
been generated using the GS system, both in NS0
cells (most commonly for recombinant antibodies) and
in CHO cells (most commonly for receptors and cell
surface markers). Scientists at Celltech and Lonza
Biologics (formerly Celltech Biologics) developed the
GS expression system in the late 1980s. However,
since then it has been licensed to a number of bi-
otechnology companies, for example, Merck, Bayer
Corporation, Hoffmann-La Roche, GlaxoWellcome
and MedImmune. As a consequence, the majority of
publications using the GS system, and in particular
the GS-NS0 system, have been performed by or in
collaboration with biotechnology companies.

Among the early papers on the GS-NS0 and GS-
CHO systems yields of 560 mg/l for a recombinant
antibody produced by the GS-NS0 system in fed-batch
airlift fermenter (Bebbington et al., 1992), and 180
mg/l for tissue inhibitor of metalloproteinase produced
by the GS-CHO system in shake flasks (Cockett et al.,
1990) were reported. However, it is important to bear
in mind that the method of culture can potentially af-
fect productivity. In addition, care must be taken when
comparing production of different antibodies from
cells as slight changes to amino acid sequence have
been noted to influence secretion rates (Hendershot et
al., 1987; Nakaki et al., 1989). In summarising all the
published production values it is clear that amplific-
ation using MSX results in an increase in production
values. For the GS-CHO system in batch culture these
range from an average of 70 mg/l for unamplified cell
to 270 mg/l for amplified lines (Field et al., 1989,
1991; Brown et al., 1992; Birch et al., 1993). Similar
observations have been made for the GS-NS0 system
where average expression levels in batch culture of
210 mg/l have been recorded in unamplified lines but
amplification resulted in an increase to an average of
510 mg/l (Brown et al., 1992; Birch et al., 1993; Bibila
et al., 1994a; Robinson et al., 1994a, b). In contrast
to the GS-CHO system there has been considerable
optimisation of fed-batch conditions for the GS-NS0
system which has resulted in substantial increases in

production. Various fed-batch protocols increase pro-
ductivity for amplified lines to an average of 1300 mg/l
(Bebbington et al., 1992; Brown et al., 1992; Robinson
et al., 1994b; Zhou et al., 1997). Fed-batch regimes
can also enhance productivity of unamplified GS-NS0
cell lines (from about 210 mg/l to 640 mg/l on average)
(Robinson et al., 1994a, b; Zhou et al., 1996). Hence,
careful optimisation of culture conditions, especially
for the GS-NS0 system can generate greatly enhanced
productivity. Values of 2.7 g/l of monoclonal antibody
has recently been reported for GS-NS0 cells in fed-
batch culture (Zhou et al., 1997). Therefore it is clear
that coupling of culture optimisation to the GS-NS0
system provides great promise for future recombinant
protein production.

The importance of, and the need for, a review of
the GS-NS0 system subject area was prompted by
the arrival on the market of two therapeutic products
produced using this system. Zenapaxr (dacliximab)
is a humanised monoclonal antibody for the prophy-
laxis of acute organ rejection which was marketed
in December 1997. This product is produced by
Hoffmann-La Roche and represented the first licens-
ing of a human therapeutic produced using the GS sys-
tem (Anon, 1997; Lonza Press Release, 1998). Since
then a second product, SynagisTM (palivizumab) pro-
duced by MedImmune has reached the market. This
is a humanised monoclonal antibody used in pediatric
patients to prevent serious lower respiratory tract dis-
ease caused by respiratory syncytial virus and is the
first monoclonal antibody licensed for any infectious
disease (Lonza Press Release, 1998).

GS-NS0 is a heterologous mammalian expression
system that allows rapid high level expression of re-
combinant proteins using a dominant selection system
and is not restricted to use in mutant cell lines. The fact
that two products generated using the GS-NS0 system
are now on the human therapeutics market highlights
the acceptance of this system by regulatory author-
ities. It is expected that, in the coming years, more
announcements will be made of products reaching the
market which have been generated from this system
and as time goes by the frequency with which these
statements are made is expected to increase.
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