Skip to main content
Log in

EIevated serum level of Thioredoxin in patients with Hepatocellular Carcinoma

  • Published:
Biotherapy

Abstract

Thioredoxin (TRX) is known to contain an active site with aredox-active disulfide and has various biological activities. The objectiveof the present study was to investigate whether circulating TRX levels areelevated in patients with chronic hepatitis (CH) or liver cirrhosis (LC) andhepatocellular carcinoma (HCC). An anti-TRX monoclonal antibody andpolyclonal antibodies that specifically recognize TRX, were generated andused for the development of an ELlSA system to measure TRX levels in humanserum. The geometric mean and its 95% confidence interval of serumlevel of TRX in healthy volunteers was 81.75 ng/ml (74.60-89.59 ng/ml). Theserum level of TRX in LC/CH patients without HCC was 80.87 ng/ml(69.66-93.88 ng/ml). The value was not statistically different from that inserum from normal volunteers (p=0.69). In contrast, the serum level of TRXin patients with HCC was 147.35 ng/ml (125.53-1 72.96 ng/ml), which wassignificantly higher when compared with the level in serum of normalvolunteers (p<0.001) and in serum of LC/CH patients without HCC(p<0.001). In four patients with HCC, the initially high level of serum TRX(>150 ng/ml) decreased below 150 ng/ml after surgical removal of the tumor.The data reported herein revealed that patients with HCC had a significantlyelevated serum level of TRX, suggesting that measurement of serum of TRXmight be a useful clinical parameter when HCC is suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luthman M, Holmgren A. Rat liver thioredoxin and thiore-doxin reductase: purification and characterization. Biochem 1982; 21(26): 6628–33.

    Google Scholar 

  2. Laurent TC, Moore EC, Reichard P. Enzymic synthesis of deoxyribonucleotides. J Biol Chem 1964; 239: 3436–44.

    Google Scholar 

  3. Mark DF, Richardson CC. Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc NatI Acad Sci USA 1976; 73(3): 780–4.

    Google Scholar 

  4. Wakasugi H, Rimsky L, Mahe Y, Kamel AM, Fradelizi D, Tursz T, Bertoglio J. Epstein-Barr virus-containing B-cell line produces an interleukin 1 that it uses as a growth factor. Proc NatI Acad Sci USA 1987; 84(3): 804–8.

    Google Scholar 

  5. Yodoi J, Takatsuki K, Masuda T. Letter: Two cases of T-cell chronic lymphocytic leukemia in Japan. N EngI J Med 1974; 290(10): 572–3.

    Google Scholar 

  6. Teshigawara K, Maeda M, Nishino K, Nikaido T, Uchiyama T, Tsudo M, Wano Y, Yodoi J. Adult T leukemia cells produce a lymphokine that augments interleukin 2 receptor expression. J Mol Cell Immunol 1985; 2(1): 17–26.

    Google Scholar 

  7. Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J, Tursz T. Adult T-cell leukemia-derived fac-tor/thioredoxin, produced by both human T-lymphotropic virus type I-and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with inter-leukin 1 and interleukin 2. Proc Natl Acad Sci USA 1990; 87(21): 8282–6.

    Google Scholar 

  8. Balcewicz-Sablinska MK, Wollman EE, Gorti R, Silberstein DS. Human eosinophil cytotoxicity-enhancing factor. II. Mul-tiple forms synthesized by U937 cells and their relationship to thioredoxin/adult T cell leukemia-derived factor. J Immunol 1991; 147(7): 2170–4.

    Google Scholar 

  9. Tonissen KF, Wells JR. Isolation and characterization of hu-man thioredoxin-encoding genes. Gene 1991; 102(2): 221–8.

    Google Scholar 

  10. Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 1979; 254(19): 9627–32.

    Google Scholar 

  11. Grippo JF, Holmgren A, Pratt WB. Proof that the endoge-nous, heat-stable glucocorticoid receptor-activating factor is thioredoxin. J Biol Chem 1985; 260(1): 93–7.

    Google Scholar 

  12. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 1992; 20(15): 3821–30.

    Google Scholar 

  13. Pigiet VP, Schuster BJ. Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc Natl Acad Sci USA 1986; 83(20): 7643–7.

    Google Scholar 

  14. Biguet C, Wakasugi N, Mishal Z, Holmgren A, Chouaib S, Tursz T, Wakasugi H. Thioredoxin increases the proliferation of human B-cell lines through a protein kinase C-dependent mechanism. J Biol Chem 1994; 269(46): 28865–70.

    Google Scholar 

  15. Schallreuter KU, Wood JM. The role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis. Biochem Biophys Res Commun 1986; 136(2): 630–7.

    Google Scholar 

  16. Spector A, Yan GZ, Huang RR, McDermottMJ, Gascoyne PR, Pigiet V. The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem 1988; 263(10): 4984–90.

    Google Scholar 

  17. Matsuda M, Masutani H, Nakamura H, Miyajima S, Yamauchi A, Yonehara S, Uchida A, Irimajiri K, Horiuchi A, Yodoi J. Protective activity of adult T cell leukemia-derived factor (ADF) against tumor necrosis factor-dependent cytotoxicity on U937 cells. J Immunol 1991; 147(11): 3837–41.

    Google Scholar 

  18. Hill HZ, Cathcart KN, Bargellini J, Trizna Z, Hill GJ, Schall-reuter KU, Wood JM. Does melanin affect the low LET radiation response of Cloudman S91 mouse melanoma cell lines? Pigment Cell Res 1991; 4(2): 80–6.

    Google Scholar 

  19. Lunn CA, Pigiet VP. The effect of thioredoxin on the radiosen-sitivity of bacteria. Int J Radiat Biol Relat Stud Phys Chem Med 1987; 51(1): 29–38.

    Google Scholar 

  20. Sachi Y, Hirota K, Masutani H, Toda K, Okamoto T, Takigawa M, Yodoi J. Induction of ADF/TRX by oxidative stress in ker-atinocytes and lymphoid cells. Immunol Lett 1995; 44(2-3): 189–93.

    Google Scholar 

  21. Durst M, Gissmann L, Ikenberg H, zur Hausen H. A papillo-mavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983; 80(12): 3812–5.

    Google Scholar 

  22. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985; 314 (6006): 111–4.

    Google Scholar 

  23. Tsunokawa Y, Takebe N, Kasamatsu T, TeradaM, Sugimura T. Transforming activity of human papillomavirus type 16 DNA sequence in a cervical cancer. Proc Natl Acad Sci USA 1986; 83(7): 2200–3.

    Google Scholar 

  24. Fujii S, Nanbu Y, Nonogaki H, Konishi I, Mori T, Masutani H, Yodoi J. Coexpression of adult T-cell leukemia-derived factor, a human thioredoxin homologue, and human papil-lomavirus DNA in neoplastic cervical squamous epithelium. Cancer 1991; 68(7): 1583–91.

    Google Scholar 

  25. Nakamura H, Masutani H, Tagaya Y, Yamauchi A, Inamoto T, Nanbu Y, Fujii S, Ozawa K, Yodoi J. Expression and growth-promoting effect of adult T-cell leukemia-derived factor. A human thioredoxin homologue in hepatocellular carcinoma. Cancer 1992; 69(8): 2091–7.

    Google Scholar 

  26. Kawahara N, Tanaka T, Yokomizo A, Nanni H, Ono M, Wada M, Kohno K, Takenaka K, Sugimachi K, Kuwano M. En-hanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res. 1996; 56: 5330–3.

    Google Scholar 

  27. Blombäck B, Blombäck M, Finkbeiner W, Holmgren A, Kowalska-Loth B, Olovson G. Enzymatic reduction of disul-fide bonds in fibrin-ogen by the thioredoxin system I. Identi-fication of reduced bonds and studies on reoxidation process. Thrombosis Research 1974; 4: 55–75.

    Google Scholar 

  28. Holmgren A, Luthman M. Tissue distribution and subcellular localization of bovine thioredoxin determined by radioim-munoassay. Biochem 1978; 17(19): 4071–7.

    Google Scholar 

  29. Mitsui A, Hirakawa T, Yodoi J. Reactive oxygen-reducing and protein-refolding activities of adult T cell leukemia-derived factor/human thioredoxin. Biochem Biophys Res Commun 1992; 186(3): 1220–6.

    Google Scholar 

  30. Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H, Yodoi J. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homolo-gous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction [published erratum appears in EMBO J 1994 May 1; 13(9): 2244]. Embo J 1989; 8(3): 757–64.

    Google Scholar 

  31. Holmgren A. Enzymatic reduction-oxidation of protein disul-fides by thioredoxin. Methods Enzymol 1984; 107: 295–300.

    Google Scholar 

  32. Schallreuter KU, Wood JM. Azelaic acid as a competitive inhibitor of thioredoxin reductase in human melanoma cells. Cancer Lett 1987; 36(3): 297–305.

    Google Scholar 

  33. Kitaoka Y, Sorachi K, Nakamura H, Masutani H, Mitsui A, Kobayashi F, Mon T, Yodoi J. Detection of adult T-cell leukemia-derived factor/human thioredoxin in human serum. Immunol Lett 1994; 41(2-3): 155–61.

    Google Scholar 

  34. Aurameas S, Ternynck T. Enzyme linked immunosorbent as-say. In: Roitt IM, Delves PJ, eds. Encyclopedia of immunol-ogy. Academic press, 1992: 508–10. vol 1).

  35. Norusis MJ. Manual of SPSS base system v6.1. SPSS Inc. 1993.

  36. Scheffe H. The analysis of variance. John Wiley and Sons, 1959.

  37. Norusis MJ. Manual of SPSS Advanced Statistics v6.1. SPSS Inc. 1994.

  38. Dunn OJ, Clark VA. Applied Statistics: Analysis of variance and regression. John Wiley and Sons, 1974.

  39. Nakamura H, De Rosa S, Roederer M, Anderson MT, Dubs JG, Yodoi J, Holmgren A, et al. Elevation of plasma thiore-doxin levels in HIV-infected individuals. Int. Immunol. 1996; 8: 603–11.

    Google Scholar 

  40. Parkin DM, Stjernsward J, Muir CS. Estimates of the world-wide frequency of twelve major cancers. Bull World Health Organ 1984; 62(2): 163–82.

    Google Scholar 

  41. Tanaka K, Hirohata T, Koga S, Sugimachi K, Kanematsu T, Ohryohji F, Nawata H, Ishibashi H, Maeda Y, Kiyokawa H, Tokunaga K, Irita Y, Takeshita S, Arase Y, Nishino N. He-patitis C and hepatitis B in the etiology of hepatocellular carcinoma in the Japanese population. Cancer Res 1991; 51 (11): 2842–7.

    Google Scholar 

  42. Kuromatsu R, Tanaka M, Tanikawa K. Serum alfa-fetoprotein and lens culinaris aggulutinin-reactive fraction of alpha-fetoprotein in patients with hepatocellular carcinoma. Liver 1993; 13: 177–82.

    Google Scholar 

  43. Lee HB, Yoo OJ, Ham JS, Lee MH. Serum alpha 1-antitrypsin in patients with hepatocellular carcinoma. Clinica Chimica Acta 1992; 206: 225–30.

    Google Scholar 

  44. Oka H, Kurioka N, Kim K, Kanno T, Kuroki T, Mizoguchi Y, Kobayashi K. Prospective study of early detection of he-patocellular carcinoma in patients with cirrhosis. Hepatology 1990; 12(4 Pt 1): 680–7.

    Google Scholar 

  45. Raedle J, Roth WK, Oremek G, Caspary WF, Zeuzem S. Alpha-fetoprotein and p53 autoantibodies in patients with chronic hepatitis C. Digestive Diseases & Sciences 1995; 40: 2587–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, K., Noda, N., Okada, S. et al. EIevated serum level of Thioredoxin in patients with Hepatocellular Carcinoma. Biotherapy 11, 277–288 (1998). https://doi.org/10.1023/A:1008032703468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008032703468

Navigation