Skip to main content
Log in

Association of a lordosis-scoliosis-kyphosis deformity in gilthead seabream (Sparus aurata) with family structure

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Skeletal deformities constitute a major problem for aquaculture industry by decreasing the final value of the fish. An analysis of skeletal malformations in 11,640 fish was performed considering families and triplicates per family. Thirtynine different skeletal abnormalities were detected, such as lordosis, vertebral fusion, absence of one or both operculum, bent-jaw, etc. Moreover, a new unusual complex spinal column deformity consisting of a consecutive repetition of lordosis, scoliosis and kyphosis (LSK) from the head to the caudal fin was described. This syndrome was statistically associated with the family structure (Z2H−family,LSK=3.49; p<0.05). The incidence of this deformity was 0.2% in the whole population, and 6.5% within the affected family (2H). The environmental and genetic causes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afonso, J.M, Montero, D., Robaina, L., Fernández, H., Izquierdo, M.S. and Ginés, R. 1998. Selection programmes for stress tolerance in fish (Review). Cah. Options Méditerran. 34: 235–245.

    Google Scholar 

  • Aida, T. 1930. Further genetical studies of Aplocheilus latipes. Genetics 15: 1–16.

    Google Scholar 

  • Akiyama, T., Murai, T. and Nose, T. 1986a. Oral administration of serotonin against spinal deformity of chum salmon fry tryptophan deficiency. Bull. Jap. Soc. Sci. Fish. 52: 1249–1254.

    Google Scholar 

  • Akiyama, T., Murai, T. and Mori, K. 1986b. Role of tryptophan metabolites in inhibition of spinal deformity of chum salmon fry caused by tryptophan deficiency. Bull. Jap. Soc. Sci. Fish. 52: 1255–1259.

    Google Scholar 

  • Ando, D., Nakajima, M. and Fujio, Y. 1995. Strain difference of vertebral abnormality in the guppy Poecilia reticulata. Tohoku. J. Agric. Res. 46: 29–34.

    Google Scholar 

  • Andrades, J.A., Becerra, J. and Fernández-Lebrez, P. 1996. Skeletal deformities in larval, juvenile and adult stages of cultures gilthead sea bream (Sparus aurata L.). Aquaculture 141: 1–11.

    Google Scholar 

  • Aulstad, D. and Kittelsen, A. 1971. Abnormal Body Curvatures of Rainbow Trout (Salmo gairdneri) Inbred Fry. J. Fish. Res. Bd. Can. 26: 1918–1920.

    Google Scholar 

  • Chatain, B. 1994. Abnormal swimblader development and lordosis in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata). Aquaculture 119: 371–379.

    Google Scholar 

  • Chávez de Martínez, M.C. 1990. Vitamin C requierement of the mexican native cichlid. Cichasoma urophtalamus. Aquaculture 86: 409–416.

    Google Scholar 

  • Chun, S., Park, C. and Lee, C. 1981. Acute toxicity of certain pesticides to teleost, with special respect to TLM and vertebral abnormality. Publ. Inst. Mar. Sci. Nat. Fish. Univ. Busan. 13: 43–48.

    Google Scholar 

  • Dabrowski, K., Moerau, R. and El Saidy, D. 1996. Ontogenetic sensitivity of channel catfish to ascorbic acid deficiency. J. Aquat. Anim. Health. 8: 22–27.

    Google Scholar 

  • Divanach, P., Boglione, C., Menu, B., Koumoundouros, G., Kentouri, M. and Cataudella, S. 1996. Abnormalities in finfish mariculture: an overview of the problem, causes and solutions. In: Seabass and Seabream Culture: Problems and Prospects. pp. 45–66. Edited by B. Chatain, M. Saroglia, J. Sweetman and P. Lavens. European Aquaculture Soc., Oostende.

    Google Scholar 

  • Faustino, M. and Power, D.M. 1997. Development of osteological structures in the sea bream: vertebral column and caudal fin complex. J. Fish Biol. 52: 11–22.

    Google Scholar 

  • Hilton, J.W., Cho, C.Y. and Slinger, S.J. 1978. Effect of graded levels of supplemental ascorbic acid in practical diets fed to rainbow trout (Salmo gairneri). J. Fish Res. Bd. Can. 35: 131–136.

    Google Scholar 

  • Hinton, D.E., Baumann, P.C., Gardner, G.R., Hawkins, W.E., Hendricks, JD., Murchelano, R.A. and Okihiro, M.S. 1992. Histopathological biomarkers. In: Biomarkers: Biochemical, Physiological and Histological Markers of Antropogenic Stress. pp. 155–209. Edited by R.J. Hugget, R.A. Kimerle, P.M. Mehrle and H. Bergman. Lewis, Boca Raton.

    Google Scholar 

  • John, T.M., George, J.C., Hilton, J.W. and Slinger, S.J. 1979. Influence of dietary ascorbic acid on plasma lipid levels in the rainbow trout. Int. J. Vitam. Nutr. Res. 49: 400–405.

    Google Scholar 

  • Kanazawa, A., Teshima, S., Koshio, S., Higashi, M. and Itoh, S. 1992. Effect of L-ascorbyl-2-phosphate-Mg on the yellowtail Seriola quinqueradiata as a vitamin C source. Nippon Suisan Gakkishi 58: 337–341.

    Google Scholar 

  • Mahajan, C.L. and Agrawal, N.K. 1979. Vitamin C deficiency in Channa punctatus. J. Fish Biol. 15:613–622.

    Google Scholar 

  • Mair, G.C. 1992. Caudal deformity syndrome (CDS): an autosomal recessive lethal mutation in the tilapia, Oreochromis niloticus (L.). J. Fish Dis. 15: 71–75.

    Google Scholar 

  • McConnell, E. and Barrows, F. 1993. Pathological changes associated with vitamin C deficiency in walleyes. J. Aquat. Anim. Health 5: 287–293.

    Google Scholar 

  • McKay, L.R. and Gjerde, B. 1986. Genetic variation for a spinal deformity in Atlantic salmon, Salmo salar. Aquaculture 52: 263–272.

    Google Scholar 

  • Nacario, J.F. 1983. The effect of thyroxine on the larvae and fry of Sarotherondon niloticus (Tilapia nilotica). Aquaculture 34:73–83.

    Google Scholar 

  • Poynton, S. 1987. Vertebral column abnormalities in brown trout, Salmo trutta L. J. Fish Dis. 10: 53–57.

    Google Scholar 

  • Purdom, C.E. 1993. Genetics and Fish Breeding. Chapman & Hall, London.

    Google Scholar 

  • Rosenthal, H.L. and Rosenthal, R.S. 1950. Lordosis, a mutation in the cyprinodont, Lebistes reticulatus. J. Heredity 41: 217–218.

    Google Scholar 

  • Sato, M., Yoshinaka, R. and Ikeda, S. 1978. Dietary ascorbic acid requirement of rainbow trout for growth and collagen formation. Bull. Jap. Soc. Sci. Fish. 44: 1029–1035.

    Google Scholar 

  • Schultz, R.J. 1963. Stubby, a hereditary vertebral deformity in the viviparous fish Poeciliopsis prolifica. Copeia: 325-330.

  • Taniguchi, N., Azuma, K. and Umeda, S. 1984. Differences due to parents in incedence of vertebral malformation in artificallybred red seabream. Bull. Jap. Soc. Sci. Fish, 50: 787–792.

    Google Scholar 

  • Walton, M.J., Coloso, M., Cowey, C.B., Adron, J.W. and Knox, D. 1984. The effects of dietary tryptophan levels on growth and metabolism of rainbow trout (Salmo gairdneri). Br. J. Nutr. 51: 279–287.

    Google Scholar 

  • Wunder, W. 1981. Lateral Curvature of the Vertebral Column (Scoliosis) of Carp (Cyprinus carpio). A Photographic study. Fisch. Teichwirt 32: 293–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afonso, J., Montero, D., Robaina, L. et al. Association of a lordosis-scoliosis-kyphosis deformity in gilthead seabream (Sparus aurata) with family structure. Fish Physiology and Biochemistry 22, 159–163 (2000). https://doi.org/10.1023/A:1007811702624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007811702624

Navigation