Skip to main content
Log in

Development of Novel Lipophilic Derivatives of DADLE (Leucine Enkephalin Analogue): Intestinal Permeability Characteristics of DADLE Derivatives in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose: The objective of this study is to examine the intestinal permeability of novel lipophilic derivatives of DADLE (Tyr- D-Ala-Gly-Phe-D-Leu), an enkephalin analogue, using isolated rat intestinal membranes.

Methods: The novel lipophilic derivatives of DADLE were synthesized by chemical modification with various fatty acids at the C terminus. The pharmacological activities of these DADLE derivatives were assessed by a hot plate test. The intestinal permeability of these derivatives was estimated by the in vitro Ussing chamber method.

Results: We obtained four different DADLE derivatives including acetyl-DADLE (DADLE-C2), butyryl-DADLE (DADLE-C4), caproyl-DADLE (DADLE-C6), and caprylyl-DADLE (DADLE-C8). All the derivatives of DADLE had at least 75 % of the activity of native DADLE, suggesting that chemical modification of DADLE at the C terminus did not markedly affect its pharmacological activity. These DADLE derivatives were more stable than native DADLE in jejunal and colonic homogenates. A “bell-shaped” profile was observed between the apparent permeability coefficients (Papp) of DADLE derivatives and lipophilicity. In particular, DADLE-C4 had the greatest permeability characteristics across the intestinal membrane of the acyl derivatives studied in this experiment. The permeability of DADLE-C4 across the jejunal membrane was further improved in the presence of puromycin, amastatin, and sodium glycocholate (NaGC), all at a concentration of 0.5 mM.

Conclusions: We suggest that the combination of chemical modification with butyric acid and the application of a protease inhibitor are effective for improving the absorption of DADLE across the intestinal membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. H. L. Lee and A. Yamamoto. Penetration and enzymatic barriers to peptide and protein absorption. Adv. Drug Delivery Rev. 4:171–207 (1990).

    Google Scholar 

  2. A. Yamamoto and S. Muranishi. Improvement of rectal peptide absorption by absorption enhancers, protease inhibitors and chemical modification. Adv. Drug Delivery Rev. 28:275–299 (1997).

    Google Scholar 

  3. H. Bundgaard. (C) Means to enhance penetration. (1) Prodrugs as a means to improve the delivery of peptide drugs. Adv. Drug Delivery Rev. 8:1–38 (1992).

    Google Scholar 

  4. M. Hashizume, T. Douen, M. Murakami, A. Yamamoto, K. Takada, and S. Muranishi. Improvement of large intestinal absorption of insulin by chemical modification with palmitic acid in rats. J. Pharm. Pharmacol. 44:555–559 (1992).

    Google Scholar 

  5. H. Asada, T. Douen, Y. Mizokoshi, T. Fujita, M. Murakami, A. Yamamoto, and S. Muranishi. Stability of acyl derivatives of insulin in the small intestine: Relative importance of insulin association characteristics in aqueous solution. Pharm. Res., 11:1115–1120 (1994).

    Google Scholar 

  6. H. Asada, T. Douen, M. Waki, S. Adachi, T. Fujita, A. Yamamoto, and S. Muranishi. Absorption characteristics of chemically modified-insulin derivatives with various fatty acids in the small and large intestine. J. Pharm. Sci. 84:682–687 (1995).

    Google Scholar 

  7. T. Fujita, T. Fujita, K. Morikawa, H. Tanaka, O. Iemura, A. Yamamoto, and S. Muranishi. Improvement of intestinal absorption of human calcitonin by chemical modification with fatty acids: Synergistic effects of acylation and absorption enhancers. Int. J. Pharm. 134:47–57 (1996).

    Google Scholar 

  8. T. Tenma, E. Yodoya, S. Tashima, T. Fujita, M. Murakami, A. Yamamoto, and S. Muranishi. Development of new lipophilic derivatives of tetragastrin: Physicochemical characteristics and intestinal absorption of acyl-tetragastrin derivatives in rats. Pharm. Res. 10:1488–1492 (1993).

    Google Scholar 

  9. E. Yodoya, K. Uemura, T. Tenma, T. Fujita, M. Murakami, A. Yamamoto, and S. Muranishi. Enhanced permeability of tetragastrin across the rat intestinal membrane and its reduced degradation by acylation with various fatty acids. J. Pharmacol. Exp. Ther. 271:1509–1513 (1994).

    Google Scholar 

  10. K. Setoh, M. Murakami, N. Araki, T. Fujita, A. Yamamoto, and S. Muranishi. Improvement of transdermal delivery of tetragastrin by lipophilic modification with fatty acids. J. Pharm. Pharmacol. 47:808–811 (1995).

    Google Scholar 

  11. T. Fujita, I. Kawahara, Y-S. Quan, K. Hattori, K. Takenaka, S. Muranishi, and A. Yamamoto. Permeability characteristics of tetragastrins across intestinal membranes using the Caco-2 monolayer system: Comparison between acylation and application of protease inhibitors. Pharm. Res. 15:1387–1392 (1998).

    Google Scholar 

  12. K. Yamada, M. Murakami, A. Yamamoto, K. Takada, and S. Muranishi. Improvement of intestinal absorption of thyrotropinreleasing hormone by chemical modification with lauric acid. J. Pharm. Pharmacol. 44:717–721 (1992).

    Google Scholar 

  13. K. Tanaka, T. Fujita, Y. Yamamoto, M. Murakami, A. Yamamoto, and S. Muranishi. Enhancement of intestinal transport of thyrotropin-releasing hormone via a carrier-mediated transport system by chemical modification with lauric acid. Biochim. Biophys. Acta 1283:119–126 (1996).

    Google Scholar 

  14. T. Fujita, Y. Morishita, H. Ito, D. Kuribayashi, A. Yamamoto, and S. Muranishi. Enhancement of the small intestinal uptake of phenylalanyl-glycine via a H+/oligopeptide transport system by chemical modification with fatty acids. Life Sci. 61:2455–2465 (1997).

    Google Scholar 

  15. S. Dodda-Kassi and V. H. L. Lee. Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albino rabbit: similarities in rates and involvement of aminopeptidases. Life Sci. 38:2019–2028 (1986).

    Google Scholar 

  16. G. A. Kerchner and L. E. Geary. Studies on the transport of enkephalin-like oligopeptides in rat intestinal mucosa. J. Pharmacol. Exp. Ther. 226:33–38 (1983).

    Google Scholar 

  17. D. I. Friedman and G. L. Amidon. Oral absorption of peptides: Influence of pH and inhibitors on the intestinal hydrolysis of leu-enkephalin and analogues. Pharm. Res. 8:93–96 (1991).

    Google Scholar 

  18. T. Uchiyama, A. Kotani, T. Kishida, H. Tatsumi, A. Okamoto, T. Fujita, M. Murakami, S. Muranishi, and A. Yamamoto. Effects of various protease inhibitors on the stability and permeability of (D-Ala2, D-Leu5) enkephalin in the rat intestine: Comparison with leucine enkephalin. J. Pharm. Sci. 87:448–452 (1998).

    Google Scholar 

  19. Y-S. Quan, T. Fujita, D. Tohara, M. Tsuji, M. Kohyama, and A. Yamamoto. Transport kinetics of leucine enkephalin across Caco-2 monolayers: Quantitative analysis for contribution of enzymatic and transport barrier. Life Sci. 64:1243–1252 (1999).

    Google Scholar 

  20. T. Mizuma, K. Ohta, A. Koyanagi, and S. Awazu. Improvement of intestinal absorption of leucine enkephalin by sugar coupling and peptidase inhibitors. J. Pharm. Sci. 85:854–857 (1996).

    Google Scholar 

  21. B. Barlos, D. Gatos, J. Kapolos, G. Papaphotiu, W. Schafer, and Y. Wenqing. Veresterung von partiell geschutzten peptidfragmenten mit harzen. Einsatz von 2-chlortritylchlorid zur synthese von Leu15-gastrin I. Tetrahedron Lett. 30:3947–3950 (1989).

    Google Scholar 

  22. M. Goodman and K. C. Stueben. Peptide syntheses via amino acid active esters. J. Am. Chem. Soc. 81:3980–3983 (1959).

    Google Scholar 

  23. M. B. Tyers. A classification of opiate receptors that mediate antinociception in animals. Br. J. Pharmacol. 69:503–512 (1980).

    Google Scholar 

  24. A. Yamamoto, E. Hayakawa, Y. Kato, A. Nishiura, and V. H. L. Lee. A mechanistic study on enhancement of rectal permeability to insulin in the albino rabbit. J. Pharmacol. Exp. Ther. 263:25–31 (1992).

    Google Scholar 

  25. A. Yamamoto, E. Hayakawa, and V. H. L. Lee. Insulin and proinsulin proteolysis in mucosal homogenates of the albino rabbit: Implications in peptide delivery from nonoral routes. Life Sci. 47:2465–2474 (1990).

    Google Scholar 

  26. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    Google Scholar 

  27. Y. Kiso, M. Yamaguchi, T. Akita, H. Moritoki, M. Takei, and H. Nakamura. Super-active enkephalin analogs. Simple tripeptide hydroxyalkylamides exhibit surprisingly high and long-lasting opioid activities. Naturwissenchaften 68:S210–S212 (1981).

    Google Scholar 

  28. P. S. Portoghese, M. Sultana, H. Nagase, and A. E. Takemori. Application of the message-address concept in the design of highly potent and selective non-peptide δ opioid receptor antagonists. J. Med. Chem. 31:281–282 (1988).

    Google Scholar 

  29. V. B. Lang, P. Langguth, C. Ottiger, H. Wunderli-Allenspach, D. Rognan, B. Rothen-Rutishauser, J-C. Perriard, S. Lang, J. Biber, and H. P. Merkle. Structure-permeation relations of metenkephalin peptide analogues on absorption and secretion mechanisms in Caco-2 monolayers. J. Pharm. Sci. 86:846–853 (1997).

    Google Scholar 

  30. T. Uchiyama, T. Sugiyama, Y-S. Quan, A. Kotani, N. Okada, T. Fujita, S. Muranishi, and A. Yamamoto. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: Their intestinal mucosal toxicity and absorptionenhancing mechanism of n-lauryl-β-D-maltopyranoside. J. Pharm. Pharmacol. 51:1241–1250 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchiyama, T., Kotani, A., Tatsumi, H. et al. Development of Novel Lipophilic Derivatives of DADLE (Leucine Enkephalin Analogue): Intestinal Permeability Characteristics of DADLE Derivatives in Rats. Pharm Res 17, 1461–1467 (2000). https://doi.org/10.1023/A:1007644706286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007644706286

Navigation