Skip to main content
Log in

Phospholipases A2 in Ischemic and Toxic Brain Injury

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Phospholipases A2 (PLA2s) regulate hydrolysis of fatty acids, including arachidonic acid, from the sn-2 position of phospholipid membranes. PLA2 activity has been implicated in neurotoxicity and neurodegenerative processes secondary to ischemia and reperfusion and other oxidative stresses. The PLA2s constitute a superfamily whose members have diverse functions and patterns of expression. A large number of PLA2s have been identified within the central nervous systems of rodents and humans. We postulated that group IV large molecular weight, cytosolic phospholipase A2 (cPLA2) has a unique role in neurotoxicity associated with ischemic or toxin stress. We created mice deficient in cPLA2 and tested this hypothesis in two injury models, ischemia/reperfusion and MPTP neurotoxicity. In each model cPLA2 deficient mice are protected against neuronal injury when compared to their wild type littermate controls. These experiments support the hypothesis that cPLA2 is an important mediator of ischemic and oxidative injuries in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Samuelsson, B., S. E. Dahlen, J. A. Lindgren, C. A. Rouzer, and C. N. Serhan. 1987. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 237:1171-1176.

    Google Scholar 

  2. Roberts, L. J., 2nd, R. G. Salomon, J. D. Morrow, and C. J. Brame. 1999. New developments in the isoprostane pathway: identification of novel highly reactive gamma-ketoaldehydes (isolevuglandins) and characterization of their protein adducts. Faseb J. 13:1157-1168.

    Google Scholar 

  3. Bonventre, J. V., and R. Nemenoff. 1991. Renal tubular arachidonic acid metabolism. Kidney Int. 39:438-449.

    Google Scholar 

  4. Snyder, F. 1995. Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem J. 305:689-705.

    Google Scholar 

  5. Malis, C. D., and J. V. Bonventre. 1986. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J Biol Chem. 261:14201-14208.

    Google Scholar 

  6. Malis, C. D., and J. V. Bonventre. 1988. Susceptibility of mitochondrial membranes to calcium and reactive oxygen species: Implications for ischemic and toxic tissue damage. Prog. Clin. Biol. Res. 282:235-259.

    Google Scholar 

  7. Malis, C. D., P. C. Weber, A. Leaf, and J. V. Bonventre. 1990. Incorporation of marine lipids into mitochondrial membranes increases suscepibility to damage by calcium and reactive oxygen species: Evidence for enhanced activation of phospholipase A2in mitochondria enriched with n-3 fatty acids. Proc. Natl. Acad. Sci. USA. 87:8845-8849.

    Google Scholar 

  8. Schweitzer, P., S. Madamba, and G. R. Siggins. 1990. Arachidonic acid metabolites as mediators of somatostatin-induced increase of neuronal M-current. Nature. 346:464-467.

    Google Scholar 

  9. Keyser, D. O., and B. E. Alger. 1990. Arachidonic acid modulates hippocampal calcium current via protein kinase C and oxygen radicals. Neuron. 5:545-553.

    Google Scholar 

  10. Massicotte, G., P. Vanderklish, G. Lynch, and M. Baudry. 1991. Modulation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2 a necessary step in long-term potentiation? Proc Natl Acad Sci U S A. 88:1893-1897.

    Google Scholar 

  11. Miller, B., M. Sarantis, S. F. Traynelis, and D. Attwell. 1992. Potentiation of NMDA receptor currents by arachidonic acid. Nature. 355:722-725.

    Google Scholar 

  12. Barbour, B., M. Szatkowski, N. Ingledew, and D. Attwell. 1989. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature. 342:918-920.

    Google Scholar 

  13. Yu, A. C., P. H. Chan, and R. A. Fishman. 1986. Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J Neurochem. 47:1181-1189.

    Google Scholar 

  14. Lynch, M. A., M. L. Errington, and T. V. P. Bliss. 1989. Nordihydroguaiaretic acid blocks the synaptic component of longterm poteneiation and the associated increases in release of glutamate and arachidonate: An in vivo study in the dentate gyrus of the rat. Neurosci. 30:693-701.

    Google Scholar 

  15. Moskowitz, N., W. Schook, and S. Puszkin. 1982. Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2.. Science. 216:305-307.

    Google Scholar 

  16. Schaechter, J. D., and L. I. Benowitz. 1993. Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. J Neurosci. 13:4361-4371.

    Google Scholar 

  17. Rehncrona, S., E. Westerberg, B. Akesson, and B. K. Siesjo. 1982. Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J Neurochem. 38:84-93.

    Google Scholar 

  18. Bazan, N. G., Jr. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta. 218:1-10.

    Google Scholar 

  19. Bazan, N. G. 1989. Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Ann N Y Acad Sci. 559:1-16.

    Google Scholar 

  20. Galli, C., and C. Spagnuolo. 1976. The release of brain free fatty acids during ischaemia in essential fatty acid-deficient rats. J Neurochem. 26:401-404.

    Google Scholar 

  21. Abe, K., K. Kogure, H. Yamamoto, M. Imazawa, and K. Miyamoto. 1987. Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J Neurochem. 48:503-509.

    Google Scholar 

  22. Siesjo, B. K. 1981. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab. 1:155-185.

    Google Scholar 

  23. Sapirstein, A., R. A. Spech, R. Witzgall, and J. V. Bonventre. 1996. Cytosolic phospholipase A2(PLA2), but not secretory PLA2, potentiates hydrogen peroxide cytotoxicity in kidney epithelial cells. J Biol Chem. 271:21505-21513.

    Google Scholar 

  24. Morrow, J. D., K. E. Hill, R. F. Burk, T. M. Nammour, K. F. Badr, and L. J. d. Roberts. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a noncyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA. 87:9383-9387.

    Google Scholar 

  25. Siesjo, B. K., C. D. Agardh, and F. Bengtsson. 1989. Free radicals and brain damage. Cerebrovasc Brain Metab Rev.1:165-211.

    Google Scholar 

  26. Siesjo, B. K., and F. Bengtsson. 1989. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab. 9:127-140.

    Google Scholar 

  27. Moskowitz, M. A., K. J. Kiwak, K. Hekimian, and L. Levine. 1984. Synthesis of compounds with properties of leukotrienes C4and D4in gerbil brains after ischemia and reperfusion. Science. 224:886-889.

    Google Scholar 

  28. Smith, W. L. 1992. Prostanoid biosynthesis and mechanisms of action. Amer. J. Physiol. 263:F181-191.

    Google Scholar 

  29. Nogawa, S., F. Zhang, M. E. Ross, and C. Iadecola. 1997. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci. 17:2746-2755.

    Google Scholar 

  30. Baskaya, M. K., Y. Hu, D. Donaldson, M. Maley, A. M. Rao, M. R. Prasad, and R. J. Dempsey. 1996. Protective effect of the 5-lipoxygenase inhibitor AA-861 on cerebral edema after transient ischemia. J Neurosurg. 85:112-116.

    Google Scholar 

  31. Bonventre, J. V. 1992. Phospholipase A2and signal transduction. J. Am. Soc. Nephrol. 3:128-150.

    Google Scholar 

  32. Dennis, E. A. 1997. The growing phospholipase A2superfamily of signal transduction enzymes. Trends Biochem. Sci. 22:1-2.

    Google Scholar 

  33. Waite, M. 1985. Approaches to the study of mammalian cellular phospholipases. J. Lipid Res. 26:1379-1388.

    Google Scholar 

  34. Waite, M. 1987. The Phospholipases. In Handbook of Lipid Research. Vol. 5. D. J. Hanahan, editor. Plenum Press, New York. 332.

    Google Scholar 

  35. Pierik, A. J., J. G. Nijssen, A. J. Aarsman, and H. Van den Bosch. 1988. Calcium-independent phospholipase A2in rat tissue cytosols. Biochim. Biophys. Acta. 962:345-353.

    Google Scholar 

  36. Bingham, C. O., 3rd, R. J. Fijneman, D. S. Friend, R. P. Goddeau, R. A. Rogers, K. F. Austen, and J. P. Arm. 1999. Low molecular weight group IIA and group V phospholipase A2enzymes have different intracellular locations in mouse bone marrow-derived mast cells. J Biol Chem. 274:31476-31484.

    Google Scholar 

  37. Bonventre, J. V. 1997. Roles of phospholipases A2in brain and tissue injury associated with ischemia and excitotoxicity. J. Lipid Med. 16:199-208.

    Google Scholar 

  38. Bonventre, J. V., Z. Huang, M. R. Taheri, E. O'Leary, E. Li, M. A. Moskowitz, and A. Sapirstein. 1997. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature. 390:622-625.

    Google Scholar 

  39. Bonventre, J. V., and W. J. Koroshetz. 1993. Phospholipase A2(PLA2) activity in gerbil brain: Characterization of cytosolic and membrane-associated forms and effects of ischemia and reperfusion on enzymatic activity. J. Lipid Med. 6:457-471.

    Google Scholar 

  40. Kim, D. K., and J. V. Bonventre. 1993. Purification of a 100 kDa phospholipase A2from spleen, lung and kidney: antiserum raised to pig spleen phospholipase A2recognizes a similar form in bovine lung, kidney and platelets, and immunoprecipitates phospholipase A2activity. Biochem J. 294:261-270.

    Google Scholar 

  41. Kim, D. K., G. Rordorf, R. A. Nemenoff, W. J. Koroshetz, and J. V. Bonventre. 1995. Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2in brain cortical cultures. Biochem J. 310:83-90.

    Google Scholar 

  42. Rordorf, G., Y. Uemura, and J. V. Bonventre. 1991. Characterization of phospholipase A2(PLA2) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J Neurosci. 11:1829-1836.

    Google Scholar 

  43. Gronich, J. H., J. V. Bonventre, and R. A. Nemenoff. 1988. Identification and characterization of a hormonally regulated form of phospholipase A2in rat renal mesangial cells. J Biol Chem. 263:16645-16651.

    Google Scholar 

  44. Bonventre, J. V., J. H. Gronich, and R. A. Nemenoff. 1990. Epidermal growth factor enhances glomerular mesangial cell soluble phospholipase A2activity. J Biol Chem. 265:4934-4938.

    Google Scholar 

  45. Gronich, J. H., J. V. Bonventre, and R. A. Nemenoff. 1990. Purification of a high-molecular-mass phospholipase A2from rat kidney activated at physiological calcium concentrations. Biochem. J. 271:37-43.

    Google Scholar 

  46. Kramer, R. M., E. F. Roberts, J. Manetta, and J. E. Putnam. 1991. The Ca2(+)-sensitive cytosolic phospholipase A2is a 100-kDa protein in human monoblast U937 cells. J Biol Chem. 266:5268-5272.

    Google Scholar 

  47. Clark, J. D., L. L. Lin, R. W. Kriz, C. S. Ramesha, L. A. Sultzman, A. Y. Lin, N. Milona, and J. L. Knopf. 1991. A novel arachidonic acid-selective cytosolic PLA2contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell. 65:1043-1051.

    Google Scholar 

  48. Leslie, C. C. 1997. Properties and regulation of cytosolic phospholipase A2. J Biol Chem. 272:16709-16712.

    Google Scholar 

  49. Kramer, R. M., E. F. Roberts, S. L. Um, A. G. Borsch-Haubold, S. P. Watson, M. J. Fisher, and J. A. Jakubowski. 1996. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2(cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem. 271:27723-27729.

    Google Scholar 

  50. Lin, L. L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and R. J. Davis. 1993. cPLA2is phosphorylated and activated by MAP kinase. Cell. 72:269-278.

    Google Scholar 

  51. Qiu, Z. H., M. A. Gijon, M. S. de Carvalho, D. M. Spencer, and C. C. Leslie. 1998. The role of calcium and phosphorylation of cytosolic phospholipase A2in regulating arachidonic acid release in macrophages. J Biol Chem. 273:8203-8211.

    Google Scholar 

  52. Hirabayashi, T., K. Kume, K. Hirose, T. Yokomizo, M. Iino, H. Itoh, and T. Shimizu. 1999. Critical duration of intracellular Ca2response required for continuous translocation and activation of cytosolic phospholipase A2. J Biol Chem. 274:5163-5169.

    Google Scholar 

  53. Glover, S., M. S. de Carvalho, T. Bayburt, M. Jonas, E. Chi, C. C. Leslie, and M. H. Gelb. 1995. Translocation of the 85-kDa phospholipase A2from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J Biol Chem. 270:15359-15367.

    Google Scholar 

  54. Schievella, A. R., M. K. Regier, W. L. Smith, and L. L. Lin. 1995. Calcium-mediated translocation of cytosolic phospholipase A2to the nuclear envelope and endoplasmic reticulum. J Biol Chem. 270:30749-30754.

    Google Scholar 

  55. Dessen, A., J. Tang, H. Schmidt, M. Stahl, J. D. Clark, J. Seehra, and W. S. Somers. 1999. Crystal structure of human cytosolic phospholipase A2reveals a novel topology and catalytic mechanism. Cell. 97:349-360.

    Google Scholar 

  56. Ross, B. M., D. K. Kim, J. V. Bonventre, and S. J. Kish. 1995. Characterization of a novel phospholipase A2activity in human brain. J Neurochem. 64:2213-2221.

    Google Scholar 

  57. Pickard, R. T., B. A. Strifler, R. M. Kramer, and J. D. Sharp. 1999. Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J Biol Chem. 274:8823-8831.

    Google Scholar 

  58. Farooqui, A. A., H. C. Yang, T. A. Rosenberger, and L. A. Horrocks. 1997. Phospholipase A2and its role in brain tissue. J Neurochem. 69:889-901.

    Google Scholar 

  59. Negre-Aminou, P., R. A. Nemenoff, M. R. Wood, B. A. de la Houssaye, and K. H. Pfenninger. 1996. Characterization of phospholipase A2 activity enriched in the nerve growth cone. J Neurochem. 67:2599-2608.

    Google Scholar 

  60. Yang, H. C., M. Mosior, B. Ni, and E. A. Dennis. 1999. Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2from rat brain. J Neurochem. 73:1278-1287.

    Google Scholar 

  61. Balsinde, J., S. E. Barbour, I. D. Bianco, and E. A. Dennis. 1994. Arachidonic acid mobilization in P388D1 macrophages is controlled by two distinct Ca2+-dependent phospholipase A2enzymes. Proc Natl Acad Sci USA. 91:11060-11064.

    Google Scholar 

  62. Balsinde, J., and E. A. Dennis. 1996. Distinct roles in signal transduction for each of the phospholipase A2enzymes present in P388D1 macrophages. J Biol Chem. 271:6758-6765.

    Google Scholar 

  63. Murakami, M., S. Shimbara, T. Kambe, H. Kuwata, M. V. Winstead, J. A. Tischfield, and I. Kudo. 1998. The functions of five distinct mammalian phospholipase A2s in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem. 273:14411-14423.

    Google Scholar 

  64. Molloy, G. Y., M. Rattray, and R. J. Williams. 1998. Genes encoding multiple forms of phospholipase A2are expressed in rat brain. Neurosci Lett. 258:139-142.

    Google Scholar 

  65. Kishimoto, K., K. Matsumura, Y. Kataoka, H. Morii, and Y. Watanabe. 1999. Localization of cytosolic phospholipase A2messenger RNA mainly in neurons in the rat brain. Neuroscience. 92:1061-1077.

    Google Scholar 

  66. Stephenson, D. T., J. V. Manetta, D. L. White, X. G. Chiou, L. Cox, B. Gitter, P. C. May, J. D. Sharp, R. M. Kramer, and J. A. Clemens. 1994. Calcium-sensitive cytosolic phospholipase A2(cPLA2) is expressed in human brain astrocytes. Brain Res. 637:97-105.

    Google Scholar 

  67. Owada, Y., T. Tominaga, T. Yoshimoto, and H. Kondo. 1994. Molecular cloning of rat cDNA for cytosolic phospholipase A2and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Brain Res Mol Brain Res. 25:364-368.

    Google Scholar 

  68. Clemens, J. A., D. T. Stephenson, E. B. Smalstig, E. F. Roberts, E. M. Johnstone, J. D. Sharp, S. P. Little, and R. M. Kramer. 1996. Reactive glia express cytosolic phospholipase A2after transient global forebrain ischemia in the rat. Stroke. 27:527-535.

    Google Scholar 

  69. Sandhya, T. L., W. Y. Ong, L. A. Horrocks, and A. A. Farooqui. 1998. A light and electron microscopic study of cytoplasmic phospholipase A2and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223-231.

    Google Scholar 

  70. Lauritzen, I., C. Heurteaux, and M. Lazdunski. 1994. Expression of group II phospholipase A2in rat brain after severe forebrain ischemia and in endotoxic shock. Brain Res. 65:353-356.

    Google Scholar 

  71. Dumuis, A., J. P. Pin, K. Oomagari, M. Sebben, and J. Bockaert. 1990. Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature. 347:182-184.

    Google Scholar 

  72. Lazarewicz, J. W., J. T. Wroblewski, and E. Costa. 1990. Nmethyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J Neurochem. 55:1875-1881.

    Google Scholar 

  73. Sanfeliu, C., A. Hunt, and A. J. Patel. 1990. Exposure to Nmethyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res. 526:241-248.

    Google Scholar 

  74. Stella, N., M. Tence, J. Glowinski, and J. Premont. 1994. Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J Neurosci. 14:568-575.

    Google Scholar 

  75. Massicotte, G., and M. Baudry. 1990. Modulation of DL-alpha-amino-3-hydroxy-5-methylisoxazole-4-proopionate (AMPA)/quisqualate receptors by phospholipase A2treatment. Neurosci Lett. 118:245-248.

    Google Scholar 

  76. Kataoka, Y., H. Morii, Y. Watanabe, and H. Ohmori. 1997. A postsynaptic excitatory amino acid transporter with chloride conductance functionally regulated by neuronal activity in cerebellar Purkinje cells. J Neurosci. 17:7017-7024.

    Google Scholar 

  77. Tzingounis, A. V., C. L. Lin, J. D. Rothstein, and M. P. Kavanaugh. 1998. Arachidonic acid activates a proton current in the rat glutamate transporter EAAT4. J Biol Chem. 273:17315-17317.

    Google Scholar 

  78. Lynch, M. A., and K. L. Voss. 1991. Presynaptic changes in long-term potentiation: elevated synaptosomal calcium concentration and basal phosphoinositide turnover in dentate gyrus. J Neurochem. 56:113-118.

    Google Scholar 

  79. Bezzi, P., G. Carmignoto, L. Pasti, S. Vesce, D. Rossi, B. L. Rizzini, T. Pozzan, and A. Volterra. 1998. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature. 391:281-285.

    Google Scholar 

  80. Zerangue, N., J. L. Arriza, S. G. Amara, and M. P. Kavanaugh. 1995. Differential modulation of human glutamate transporter subtypes by arachidonic acid. J Biol Chem. 270:6433-6435.

    Google Scholar 

  81. Kolko, M., T. Bruhn, T. Christensen, M. Lazdunski, G. Lambeau, N. G. Bazan, and N. H. Diemer. 1999. Secretory phospholipase A2potentiates glutamate-induced rat striatal neuronal cell death in vivo. Neurosci Lett. 274:167-170.

    Google Scholar 

  82. Uozumi, N., K. Kume, T. Nagase, N. Nakatani, S. Ishii, F. Tashiro, Y. Komagata, K. Maki, K. Ikuta, Y. Ouchi, J. Miyazaki, and T. Shimizu. 1997. Role of cytosolic phospholipase A2in allergic response and parturition. Nature. 390:618-622.

    Google Scholar 

  83. Edgar, A. D., J. Strosznajder, and L. A. Horrocks. 1982. Activation of ethanolamine phospholipase A2in Brain during ischemia. J Neurochem. 39:1111-1116.

    Google Scholar 

  84. Saluja, I., M. H. O'Regan, D. Song, and J. W. Phillis. 1999. Activation of cPLA2, PKC, and ERKs in the rat cerebral cortex during ischemia/reperfusion. Neurochem Res. 24:669-677.

    Google Scholar 

  85. Kindy, M. S. 1993. Inhibition of tyrosine phosphorylation prevents delayed neuronal death following cerebral ischemia. J Cereb Blood Flow Metab. 13:372-377.

    Google Scholar 

  86. Alessandrini, A., S. Namura, M. A. Moskowitz, and J. V. Bonventre. 1999. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA.96:12866-12869.

    Google Scholar 

  87. Phillis, J. W., D. Song, and M. H. O'Regan. 1996. Inhibition of tyrosine phosphorylation attenuates amino acid neurotransmitter release from the ischemic/reperfused rat cerebral cortex. Neurosci Lett. 207:151-154.

    Google Scholar 

  88. Xing, M., and P. A. Insel. 1996. Protein kinase C-dependent activation of cytosolic phospholipase A2and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest. 97:1302-1310.

    Google Scholar 

  89. Waterman, W. H., T. F. Molski, C. K. Huang, J. L. Adams, and R. I. Sha'afi. 1996. Tumour necrosis factor-alpha-induced phosphorylation and activation of cytosolic phospholipase A2are abrogated by an inhibitor of the p38 mitogen-activated protein kinase cascade in human neutrophils. Biochem J. 319:17-20.

    Google Scholar 

  90. Cohen, P. S., H. Schmidtmayerova, J. Dennis, L. Dubrovsky, B. Sherry, H. Wang, M. Bukrinsky, and K. J. Tracey. 1997. The critical role of p38 MAP kinase in T cell HIV-1 replication. Mol Med. 3:339-346.

    Google Scholar 

  91. Walton, K. M., R. DiRocco, B. A. Bartlett, E. Koury, V. R. Marcy, B. Jarvis, E. M. Schaefer, and R. V. Bhat. 1998. Activation of p38MAPK in microglia after ischemia. J Neurochem. 70:1764-1767.

    Google Scholar 

  92. Klivenyi, P., M. F. Beal, R. J. Ferrante, O. A. Andreassen, M. Wermer, M. R. Chin, and J. V. Bonventre. 1998. Mice deficient in group IV cytosolic phospholipase A2are resistant to MPTP neurotoxicity. J Neurochem. 71:2634-2637.

    Google Scholar 

  93. Bloem, B. R., I. Irwin, O. J. Buruma, J. Haan, R. A. Roos, J. W. Tetrud, and J. W. Langston. 1990. The MPTP model: versatile contributions to the treatment of idiopathic Parkinson' disease. J Neurol Sci. 97:273-293.

    Google Scholar 

  94. Gluck, M. R., S. K. Youngster, R. R. Ramsay, T. P. Singer, and W. J. Nicklas. 1994. Studies on the characterization of the inhibitory mechanism of 4'-alkylated 1-methyl-4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem. 63:655-661.

    Google Scholar 

  95. Tipton, K. F., and T. P. Singer. 1993. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem. 61:1191-1206.

    Google Scholar 

  96. D'Amato, R. J., Z. P. Lipman, and S. H. Snyder. 1986. Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+'binds to neuromelanin. Science. 231:987-989.

    Google Scholar 

  97. Snyder, S. H., and R. J. D'Amato. 1986. MPTP: a neurotoxin relevant to the pathophysiology of Parkinson' disease. The 1985 George C. Cotzias lecture. Neurology. 36:250-258.

    Google Scholar 

  98. Przedborski, S., V. Kostic, V. Jackson-Lewis, A. B. Naini, S. Simonetti, S. Fahn, E. Carlson, C. J. Epstein, and J. L. Cadet. 1992. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci. 12:1658-1667.

    Google Scholar 

  99. Bowling, A. C., and M. F. Beal. 1995. Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci. 56:1151-1171.

    Google Scholar 

  100. Adams, J. D., Jr., L. K. Klaidman, and A. C. Leung. 1993. MPP++and MPDP++induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med. 15:181-186.

    Google Scholar 

  101. Kukreja, R. C., H. A. Kontos, M. L. Hess, and E. F. Ellis. 1986. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res. 59:612-619.

    Google Scholar 

  102. Rashba-Step, J., A. Tatoyan, R. Duncan, D. Ann, T. R. Pushpa-Rehka, and A. Sevanian. 1997. Phospholipid peroxidation induces cytosolic phospholipase A2activity: membrane effects versus enzyme phosphorylation. Arch Biochem Biophys. 343:44-54.

    Google Scholar 

  103. Madesh, M., and K. A. Balasubramanian. 1997. Activation of liver mitochondrial phospholipase A2by superoxide. Arch Biochem Biophys. 346:187-192.

    Google Scholar 

  104. Aubin, N., O. Curet, A. Deffois, and C. Carter. 1998. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem. 71:1635-1642.

    Google Scholar 

  105. Paller, M. S., and J. C. Manivel. 1992. Prostaglandins protect kidneys against ischemic and toxic injury by a cellular effect. Kidney Int. 42:1345-1354.

    Google Scholar 

  106. Reder, A. T., M. Thapar, A. M. Sapugay, and M. A. Jensen. 1994. Prostaglandins and inhibitors of arachidonate metabolism suppress experimental allergic encephalomyelitis. J. Neuroimmunol. 54:117-127.

    Google Scholar 

  107. Yang, H. C., M. Mosior, C. A. Johnson, Y. Chen, and E. A. Dennis. 1999. Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem. 269:278-288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapirstein, A., Bonventre, J.V. Phospholipases A2 in Ischemic and Toxic Brain Injury. Neurochem Res 25, 745–753 (2000). https://doi.org/10.1023/A:1007583708713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007583708713

Navigation