Skip to main content
Log in

Permeability and Diffusion in Vitreous Humor: Implications for Drug Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Previous experimental work suggests that convection maybe important in determining the biodistribution of drugs implanted orinjected in the vitreous humor. To develop accurate biodistributionmodels, the relative importance of diffusion and convection inintravitreal transport must be assessed. This requires knowledge of both thediffusivity of candidate drugs and the hydraulic conductivity of thevitreous humor.

Methods. Hydraulic conductivity of cadaveric bovine vitreous humorwas measured by confined compression tests at constant loads of 0.15and 0.2 N and analyzed numerically using a two-phase model. Diffusioncoefficient of acid orange 8, a model compound, in the same mediumwas measured in a custom-built diffusion cell.

Results. Acid orange 8 diffusivity within vitreous humor is about halfthat in free solution. When viscous effects are properly accounted for,the hydraulic conductivity of bovine vitreous humor is 8.4 ± 4.5 ×10−7 cm2/Pa s.

Conclusions. We predict that convection does not contributesignificantly to transport in the mouse eye, particularly forlow-molecular-weight compounds. For delivery to larger animals, such as humanswe conclude that convection accounts for roughly 30% of the totalintravitreal drug transport. This effect should be magnified forhigher-molecular-weight compounds, which diffuse more slowly, and inglaucoma, which involves higher intraocular pressure and thus potentiallyfaster convective flow. Thus, caution should be exercised in theextrapolation of small-animal-model biodistribution data to human scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. M. Hart. Adler's Physiology of the Eye, Mosby-Year Book, Chicago, 1992.

    Google Scholar 

  2. S. C. Pflugfelder, E. Hernandez, S. J. Fliesler, and J. Alvarez. Intravitreal vancomycin. Retinal toxicity, clearance, and interaction with gentamicin. Arch. Ophthalmol. 105:831–837 (1987).

    Google Scholar 

  3. A. Merkli, C. Tabatabay, R. Gurny, and J. Heller. Biodegradable polymers for the controlled release of ocular drugs. Prog. Poly. Sci. 23:563–580 (1998).

    Google Scholar 

  4. C. L. Cottriall, N. A. McBrien, R. Annies, and E. M. Leech. Prevention of form-deprivation myopia with pirenzepine: a study of drug delivery and distribution. Ophthalmic Physiol. Opt. 19:327–335 (1999).

    Google Scholar 

  5. W. H. Stern, G. P. Lewis, P. A. Erickson, C. J. Guerin, D. H. Anderson, S. K. Fisher, and J. J. O'Donnell. Fluorouracil therapy for proliferative vitreoretinopathy After vitrectomy. Am. J. Ophthalmol. 96:33–42 (1983).

    Google Scholar 

  6. Y. Tano, G. Sugita, G. Abrams, and R. Machemer. Inhibition of intraocular proliferations with intravitreal corticosteroids. Am. J. Ophthalmol. 89:131–6 (1980).

    Google Scholar 

  7. Y. Nishimura, H. Hayashi, K. Oshima, and S. Iwata. The diffusion in the bovine vitreous. Acta. Ophthalmol. Jpn. 90:1313–6 (1986).

    Google Scholar 

  8. R. J. Kaiser and D. M. Maurice. The diffusion of fluorescein in the lens. Exp. Eye Res. 3:156–165 (1964).

    Google Scholar 

  9. A. Ohtori and K. J. Toko. In vivo/in vitro correlation of intravitreal delivery of drugs with the help of computer simulation. Biol. Pharm. Bull. 17:283–90 (1994).

    Google Scholar 

  10. S. Tsuboi and J. E. Pederson. Volume flow across the isolated retinal pigment epithelium of cynomulgus monkey eyes. Inv. Ophth. Vis. Sci. 29:1652–5 (1988).

    Google Scholar 

  11. M. Araie and D. Maurice. The loss of flourescein, flourescein glucuronide and flourescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp. Eye Res. 52: 27–39 (1991).

    Google Scholar 

  12. S. Friedrich, Y. Cheng, and B. Saville. Drug distribution in the vitreous humor of the human eye: the effect of intravitreal injection position and volume. Cur. Eye Res. 16:663–669 (1997).

    Google Scholar 

  13. D. L. Epstein, J. M. Hashimoto, P. J. Anderson, and W. M. Grant. Experimental perfusions through the anterior and vitreous chamber with possible relationships to malignant glaucoma. Am. J. Ophthalmol. 88:1078–86 (1979).

    Google Scholar 

  14. I. Fatt. Flow and diffusion in the vitreous body of the eye. Bull. Math. Biol. 37:85–90 (1975).

    Google Scholar 

  15. D. Maurice. Flow of water between aqueous and vitreous compartments in the rabbit eye. Am. J. Physiol. 252:F104–108 (1987).

    Google Scholar 

  16. S. Tsuboi and J. E. Pederson. Effect of plasma osmolality and intraocular pressure on fluid movement across the blood-retinal barrier. Inv. Ophth. Vis. Sci. 29:1747–9 (1988).

    Google Scholar 

  17. I. Fatt. Hydraulic flow conductivity of the vitreous gel. Inv. Ophth. Vis. Sci. 16:565–568 (1977).

    Google Scholar 

  18. D. M. Knapp, V. H. Barocas, A. G. Moon, K. Yoo, L. R. Petzold, and R. T. Tranquillo. Rheology of reconstituted type I collagen gel in confined compression. J. Rheology 41:971–993 (1997).

    Google Scholar 

  19. L. A. Setton, W. Zhu, and V. C. Mow. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J. Biomechanics 26:581–592 (1995).

    Google Scholar 

  20. F. A. Bettelheim and T. J. Y. Wang. Dynamic viscoelastic properties of bovine vitreous. Exp. Eye Res. 23:435–441 (1976).

    Google Scholar 

  21. B. Lee, M. Litt, and G. Buchsbaum. Rheology of the vitreous body: Part 1. Viscoelasticity of human vitreous. Biorheology 31:327–338 (1994).

    Google Scholar 

  22. M. Tokita, Y. Fujiya, and K. Hikichi. Dynamic viscoelasticity of the bovine vitreous. Biorheology 21:751–756 (1984).

    Google Scholar 

  23. V. H. Barocas and R. T. Tranquillo. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119:137–145 (1997).

    Google Scholar 

  24. M. Dembo and F. Harlow. Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys. J. 50:109–121 (1986).

    Google Scholar 

  25. L. Petzold, J. B. Rosen, P. E. Gill, and K. Park. Numerical optimal control of parabolic PDEs using DASOPT. In L. Biegler, et al., (eds.) Large Scale Optimization with Applications, Part II: Optimal Design and Control, IMA Volumes in Mathematics and its Applications, Springer-Verlag. New York. 1997, pp. 271–300.

    Google Scholar 

  26. C. Geankoplis. Transport Processes and Unit Operation, Prentice Hall. New Jersey, 1983.

    Google Scholar 

  27. S. P. Chen and H. W. Osterhoudt. Diffusion and solubility of some azo dyes in swollen gelatin matrices· the effects of dye size, matrix swell, and dye matrix interactions. J. Appl. Poly. Sci. 30:2075–2094 (1985).

    Google Scholar 

  28. I. Fatt and B. Hedbys. Flow of water in the sclera. Exp. Eye Res. 10:243–249 (1970).

    Google Scholar 

  29. W. G. Robison, T. Kuwabara, and J. Zwaan. Eye research. In H. L. Foster, J. D. Small, and J. G. Fox (eds.), The Mouse in Biomedical Research. Volume IV. Experimental Biology and Oncology, Academic Press. New York. 1982, p. 69–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore W. Randolph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Heys, J.J., Barocas, V.H. et al. Permeability and Diffusion in Vitreous Humor: Implications for Drug Delivery. Pharm Res 17, 664–669 (2000). https://doi.org/10.1023/A:1007517912927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007517912927

Navigation