Skip to main content
Log in

Systematic Investigations of the Influence of Molecular Structure on the Transport of Peptides Across Cultured Alveolar Cell Monolayers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine how the structures of peptides influence theiralveolar permeability.

Methods. The studies were performed using 14 synthetic ‘model’peptides, labelled with a novel, non-intrusive amino acid fluorophore, andtheir transport studied using rat alveolar cell monolayers cultured onpermeable supports.

Results. The passage of the peptides across the epithelial cellmonolayers is shown to be primarily paracellular, with an inverse dependenceon molecular size, and an enhanced flux observed for cationic peptides.The apparent permeability coefficients (P app ) for the peptides(together with those for other organic solutes, taken from the literature) areshown to be well-modelled assuming two populations of ‘pores’ in themonolayers, modelled as cylindrical channels of radii 15 Å and 22nm. The former pores are shown to be numerically equatable withthe monolayer tri-junctional complexes, and the latter are taken asmonolayer defects.

Conclusions. The various monolayer P app values correlatewell with the results from in vivo transport experiments, and the conclusion isdrawn that the pulmonary delivery of peptide drugs is perfectlyexploitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Patton, and R. M. Platz. Mechanisms of macromolecule absorption by the lungs, Adv. Drug Del. Rev. 19:3–36 (1996).

    Google Scholar 

  2. D. A. Wall. Pulmonary absorption of peptides and proteins. Drug Delivery 2:1–20 (1995).

    Google Scholar 

  3. L. Wang, D. Toledo-Velasquez, D. Schwegler-Berry, J. K. H. Ma, and Y. Rojanasakul. Transport and hydrolysis of enkephalins in cultured alveolar epithelial cell monolayers. Pharm. Res. 10:1662–1667 (1993).

    Google Scholar 

  4. K. Morimoto, H. Yamahara, V. H. L. Lee, and K.-J. Kim. Dipeptide transport across alveolar epithelial cell monolayers. Pharm. Res. 10:1668–1674 (1993).

    Google Scholar 

  5. H. Yamahara, K. Morimoto, V. H. L. Lee, and K.-J. Kim. Effects of protease inhibitors on vasopressin transport across rat alveolar epithelial cell monolayers. Pharm. Res. 11:1617–1622 (1994).

    Google Scholar 

  6. F. M. Bennett, D. J. Barlow, A. N. O. Dodoo, R. C. Hider, A. B. Lansley, M. J. Lawrence, C. Marriott, and S. S. Bansal. L-(6,7-dimethoxy-4-coumaryl) alanine: an intrinsic probe for the labelling of peptides. Tetrahedron Lett. 38:7449–7452 (1997).

    Google Scholar 

  7. F. M. Bennett, D. J. Barlow, A. N. O. Dodoo, R. C. Hider, A. B. Lansley, M. J. Lawrence, C. Marriott, and S.S. Bansal. Synthesis and properties of (6, 7-dimethoxy-4-coumaryl)alanine:a fluorescent peptide label. Anal. Biochem. 270:15–23 (1999).

    Google Scholar 

  8. K.-J. Kim, D.-K. Suh, R. L. Lubman, S. I., Danto, Z. Borok, and E. D. Crandall. Studies on the mechanisms of action of active ion fluxes across alveolar cell monolayers. J. Tiss. Cult. Meth. 14:187–194 (1992).

    Google Scholar 

  9. C. H. van Os, M. D. de Jong, and J. F. G. Slegers. Dimensions of polar pathways through rabbit gall bladder epithelium, J. Membr. Biol. 15:363–382 (1974).

    Google Scholar 

  10. C. Chothia. Structural invariants in protein folding. Nature 254:304–308 (1975).

    Google Scholar 

  11. R. C. Weast (ed)., CRC Handbook of Chemistry & Physics, CRC Press, Boca Raton Florida, 1987.

    Google Scholar 

  12. B. D. Bunday. Basic Optimisation Methods, Edward Arnold, Victoria, Australia, 1984.

    Google Scholar 

  13. P. Artusson, A.-L. Ungell, and J.-E. Löfroth. Selective permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm. Res. 10:1123–1129 (1993).

    Google Scholar 

  14. J. Bertran, A. Werner, G. Stange, D. Markovich, J. Biber, X. Testar, A. Zorzano, M. Palacin, and H. Murer. Expressions of Na+ independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochem. J. 281:717–723 (1992).

    Google Scholar 

  15. M. Boll, M. Herget, M. Wagener, W. M. Weber, D. Markovich, J. Biber, W. Clauss, H. Murer, and H. Daniel. Expression cloning and functional charaterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc. Natl. Acad. Sci. (USA) 93:284–289 (1996).

    Google Scholar 

  16. Y.-J. Fei, Y. Kanai, S. Nussberger, V. Ganapathy, F. H. Leibach, M. F. Romero, S. K. Singh, W. F. Boron, and M.A. Hediger, Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563–566 (1994).

    Google Scholar 

  17. S. A. Lewis, J. R. Berg, and T. J. Kleine. Modulation of epithelial permeability by extracellular macromolecules. Physiol. Rev. 75:561–589 (1995).

    Google Scholar 

  18. Y. Matsukawa, V. H. L. Lee, E. D. Crandall, and K.-J. Kim. Size-dependent dextran transport across rat alveolar epithelial cell monolayers. J. Pharm. Sci. 86:305–309 (1997).

    Google Scholar 

  19. A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. H. Ho. Quantitative approaches to delineate paracellular diffusion in cultured alveolar epithelial cell monolayers. J. Pharm. Sci. 83:1529–1536 (1994).

    Google Scholar 

  20. W. D. Stein. The movement of molecules across cell membranes, Academic Press, New York, 1967.

    Google Scholar 

  21. R. A. Conradi, A. R. Hilgers, N. F. H. Ho, and P. S. Burton. The influence of peptide structure on transport across Caco-2 cells. Pharm. Res. 8:1453–1460 (1991).

    Google Scholar 

  22. T. Teorell. In Butler, J. A. V. and Randall, J. T. (eds). Progress in Biophysics and Biophysical Chemistry, Academic Press, New York, Vol. 3, 1953, pp. 305–369.

    Google Scholar 

  23. F. E. Curry. In Handbook of Physiology. The Cardiovascular System. Microcirculation, Am. Physiol. Soc., Bethesda, MD, sect. 2, vol. IV, pt. 1, 1984, pp. 309–374.

    Google Scholar 

  24. P. Claude. Morphological factors influencing transepithelial permeability; a model for the resistance of the zonula occludens. J. Membr. Biol. 39:219–232 (1978).

    Google Scholar 

  25. J. M. Anderson, M. S. Balda, and A. J. Fanning. The structure and function of tight junctions. Curr. Opin Cell Biol. 5:772–778 (1993).

    Google Scholar 

  26. E. R. Weibel. In Fishman, A.P. and Fisher, A.B. (eds.), Handbook of Physiology. The Respiratory System. Circulation & Non–respiratory functions, Amer. Physiol. Soc., Bethseda, MA, sect. 3, vol. I, 1985, pp. 47–91.

    Google Scholar 

  27. M. M. Berg, K. J. Kim, R. L. Lubman, and E. D. Crandall. Hydrophilic solute transport across rat alveolar epithelium. J. Appl. Physiol. 66:2320–2327 (1989).

    Google Scholar 

  28. L. S. Schanker and J. A. Hemberger. Relation between molecular weight and pulmonary absorption rate of lipid insoluble compounds in neonatal and adult rats. Biochem. Pharmacol. 32:2599–2601 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodoo, A.N.O., Bansal, S., Barlow, D.J. et al. Systematic Investigations of the Influence of Molecular Structure on the Transport of Peptides Across Cultured Alveolar Cell Monolayers. Pharm Res 17, 7–14 (2000). https://doi.org/10.1023/A:1007514121527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007514121527

Navigation