Skip to main content
Log in

Coordination of RuCl3(NO)(H2O)2 by imidazole, histidine and iminodiacetate ligands: a study of complexation of 'Caged NO' by simple bio-cellular donors

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The 'caged NO' reagent, RuCl3NO(H2O)2, has been studied by n.m.r. and i.r. methods with imidazole, histidine, histamine, and N-methyliminodiacetate as complexing ligands. These ligands are representative of cellular donors that would be encountered as RuCl3NO(H2O)2 migrates through biological cells. [RuCl3NO(imH)(H2O)], [RuCl3(NO)(imH)2] and [RuCl2(NO)(imH)3]+ complexes (imH = imidazole) have been detected by 1H-n.m.r. and i.r. and electrospray mass spectrometry (e.s.i.–m.s.) methods. Based upon the effect of cis ligand addition on the ν(NO) frequency causing a decrease in frequency, the 1:1 and 1:2 complexes have the imidazole donors in the plane cis to the NO+ moiety, whereas the 1:3 species has the third imidazole trans to the NO+. The trans imidazole donor causes 'trans-strengthening' of the N–O bond of the {RuNO}6 chromophore. 1H-n.m.r. shows that the monodentate imidazole donor(s) is (are) in rapid exchange with free imidazole in solution for each of the n = 1–3 species. Histidine and histamine make kinetically more stable 1:1 complexes with the major isomer having an axially-coordinated histidine imidazole donor, but in-plane donation for histamine. The carboxylate of coordinated histidine remains pendant according to i.r. and 13C-n.m.r. data. From syntheses carried out at pH ca. 5, the amino donor is H-bonded to an in-plane H2O in the major species (ca. 75%) and coordinated with displacement of the in-plane H2O in the lesser isomer (25%). By contrast, the histamine ligand binds with an in-plane bound imidazole and a pendant protonated amino group (94%). The remaining 6% has an in-plane chelated histamine, analogous to the bis imidazole species and the known fac, cis-[RuCl3NO(en)] complex. N-Methyliminodiacetate is observed to form one main [RuCl(NO)(mida)(H2O)] complex (85%) with two chelated glycinato donor groups with RuCl3NO(H2O)2, one glycinato group chelated 'in-plane' with the central amine donor and one axial coordinated glycinato donor. A second [RuCl(NO)(mida)(H2O)] complex (the remaining 15%) has the amine donor trans to NO+ and chelated glycinato groups which coordinate in the RuClO2(OH2) plane, either cis or trans to each other, in a 60:40 split (ca. 9% and 6%). The presence of one Cl and one H2O in the [RuCl(NO)(mida)(H2O)] complexes was established by e.s.i.–m.s. These results show that RuCl3NO(H2O)2 is likely to be freely mobile within a cellular environment, forming stable complexes via bidentate chelation with 'two-point' nitrogen donors (en, his, etc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bettache, T. Carter, J.E. Corrie and D. Ogden, Methods in Enzymology, 268, 266 (1996).

    Google Scholar 

  2. T.D. Carter, N. Bettache and D. Ogden, Brit. J. Pharmacol, 122, 971 (1997).

    Google Scholar 

  3. P.C. Ford, J. Bourassa, K. Miranda, B. Lee, I. Lorkovic, S. Boggs, S. Kudo and L. Laverman, Coord. Chem. Rev., 171, 185 (1998).

    Google Scholar 

  4. G. Stochel, A. Wanat, E. Kulis and Z. Stasicka, Coord. Chem. Rev., 171, 203 (1998).

    Google Scholar 

  5. T. Ishiyama, T. Matsumura and Y. Honda, Radioisotopes, 30, 361 (1981).

    Google Scholar 

  6. H. Tomizawa, K. Harada, E. Miki, K. Mizumachi, T. Ishimori, A. Urushiyama and M. Nakahara, Bull. Chem. Soc. Jpn., 66, 1658 (1993).

    Google Scholar 

  7. W. Odenkirk, A.L. Rheingold and B. Bosnich, J. Am. Chem. Soc., 114, 6392 (1992).

    Google Scholar 

  8. A.A. Batista, C. Pereira, S.L. Queiroz, L.A.A. Olivera, R.H. de A. Santos and M.T. do P. Gambardella, Polyhedron, 16, 927 (1997).

    Google Scholar 

  9. C.T. Page and J.E. Fergusson, Aust. J. Chem., 36, 855 (1983).

    Google Scholar 

  10. S. Dhf, O.G. Teixeira and A.A. Batista, Polyhedron, 14, 1031 (1995).

    Google Scholar 

  11. A. Domenicano, A. Vaciago, L. Zambonelli, P.L. Loader and L.M. Venanzi, J. Chem. Soc., Chem. Commun., 476 (1966).

  12. (a) H. Tomizawa, E. Miki, K. Mizumachi and T. Ishimori, Bull. Chem. Soc. Jpn., 67, 1809 (1994); (b) H. Tomizawa, E. Miki, K. Mizamachi and T. Ishimori, Bull. Chem. Soc. Jpn., 67, 1816 (1994).

    Google Scholar 

  13. G.A. Heath and R.L. Martin, Aust. J. Chem., 23, 2297 (1970).

    Google Scholar 

  14. J.V. Dubrawski and R.D. Feltham, Inorg. Chem., 19, 355 (1980).

    Google Scholar 

  15. J.M. Slocik, R.A. Kortes and R.E. Shepherd, Metal-Based Drugs, 7, 67 (2000).

    Google Scholar 

  16. D.R. Lang, J.A. Davis, L.G.F. Lopes, A.A. Ferro, L.C.G. Vaasconcellos, D.W. Franco, E. Tfouni, A. Wieraszko and M.J. Clarke, Inorg. Chem., 39, 2294 (2000).

    Google Scholar 

  17. Y. Suzuki, H. Tomizawa and E. Miki, Inorg. Chim. Acta, 290, 36 (1999).

    Google Scholar 

  18. (a) W. Petri, T. Pieper, M. Sommer, B.K. Keppler and G. Geister, Eur. J. Inorg. Chem., 9, 155 (1999). (b) B.K. Keppler, W. Rupp, U.W. Juhl, H. Endres, R. Niebel and W. Balzer, Inorg. Chem., 26, 4366 (1987). (c) B.K. Keppler and W. Rupp, J. Cancer Res. Clin. Oncol., 111, 166 (1986). (d) F.T. Garzon, M.R. Berger, B.K. Keppler and D. Schmal, 19, 347 (1987). (e) A. Galeano, M.R. Berger and B.K. Keppler, Arzneimittel-Forsch, 42, 821 (1992).

    Google Scholar 

  19. (a) L. Trynda-Lemiesz, B.K. Keppler and H. Kozlowski, J. Inorg. Biochem., 73, 123 (1999). (b) F. Kratz, B.K. Keppler, L. Messori, C. Smith and E.N. Baker, Metal-Based Drugs, 1, 169 (1994). (c) F. Frantz, M. Hartmann, B. Keppler and L. Messori, J. Biol. Chem., 269, 2581 (1994). (d) C.A. Smith, A.J. Sutherland-Smith, B.K. Keppler, F. Kratz and E.N. Baker, J. Biol. Inorg. Chem., 1, 424 (1996).

  20. F.G. Vilchez, R. Vilaplana, G. Balasco and L. Messori, J. Inorg. Biochem., 71, 45 (1998).

    Google Scholar 

  21. T.A. Balakaeva, A.V. Vhurakov, M.G. Erzernitskaya, L.G. Kux'mina, B.V. Lokshin and E. Ehimenko, Russ. J. Coord. Chem., 25, 579 (1999).

    Google Scholar 

  22. J. Slocik and R.E. Shepherd, Inorg. Chim. Acta, (2000), accepted for publication.

  23. (a) G.E. Kirvan and D.W. Margerum, Inorg. Chem., 24, 3017 (1985). (b) J.C. Cooper, L.F. Wong and D.W. Margerum, Inorg. Chem., 17, 261 (1978). (c) B.E. Schwederski, H.P.D. Lee and D.W. Margerum, Inorg. Chem., 29, 3569 (1990). (d) E.J. Billo, G.F. Smith and D.W. Margerum, J. Am. Chem. Soc., 93, 2635 (1971).

    Google Scholar 

  24. P. Tsiveriotis, N. Hadjiladis and G. Stavropoulos, Inorg. Chim. Acta, 261, 83 (1997).

    Google Scholar 

  25. M.K. Kim and A.E. Martell, J. Am. Chem. Soc., 89, 5138 (1967).

    Google Scholar 

  26. S.P. Fricker, E. Slade, N.A. Powell, O.J. Vaughn, G. Henderson, S.A. Murrer, I.C. Megson, S.K. Bisland and F.W. Flitney, Br. J. Pharmacol., 122, 1441 (1997).

    Google Scholar 

  27. N. Davies, M.T. Wilson, E. Slade, S.P. Fricker, B.A. Murrer, N.A. Powell and G.R. Henderson, J. Chem. Soc., Chem. Commun., 47 (1997).

  28. (a) Z. Guo and P.J. Sadler, Adv. Inorg. Chem., 49, 183 (2000); (b) M.J. Clarke, F.C. Zhu and D.R. Frasca, Chem. Rev., 99, 2511 (1999).

    Google Scholar 

  29. Y. Chen and R.E. Shepherd, J. Inorg. Biochem., 68, 183 (1997).

    Google Scholar 

  30. Y. Chen, F.-T. Lin and R.E. Shepherd, Inorg. Chem., 38, 973 (1999).

    Google Scholar 

  31. J.M. Fletcher, I.L. Jenkins and F.M. Lever, J. Inorg. Nucl. Chem., 1, 378 (1955).

    Google Scholar 

  32. Y. Chen, F.-T. Lin and R.E. Shepherd, Inorg. Chem., 36, 818 (1997).

    Google Scholar 

  33. Y. Chen, F.-T. Lin and R.E. Shepherd, Inorg. Chim. Acta, 268, 287 (1998).

    Google Scholar 

  34. Y. Chen and R.E. Shepherd, Inorg. Chim. Acta, 293, 123 (1999).

    Google Scholar 

  35. Y. Chen, M.A. Sweetland and R.E. Shepherd, Inorg. Chim. Acta, 260, 163 (1997).

    Google Scholar 

  36. M.S. Ward and R.E. Shepherd, Inorg. Chim. Acta, 286, 197 (1999).

    Google Scholar 

  37. M.S. Ward, G. Borisenko and R.E. Shepherd, Transition Met. Chem., 24, 224 (1999).

    Google Scholar 

  38. J.B. Godwin and T.J. Meyer, Inorg. Chem., 10, 471 (1971).

    Google Scholar 

  39. H. Nagao, H. Nishimura, H. Funato, Y. Ichikawa, F.S. Howell, M. Mukaida and H. Kakihana, Inorg. Chem., 28, 3955 (1989).

    Google Scholar 

  40. (a) R.E. Shepherd and H. Taube, Inorg. Chem., 12, 1392 (1973). (b) R.J. Sundberg, R.E. Shepherd and H. Taube, J. Am. Chem. Soc., 94, 6558 (1972).

    Google Scholar 

  41. (a) M.F. Hoq, C.R. Johnson, S. Paden and R.E. Shepherd, Inorg. Chem., 22, 2693 (1983). (b) W.W. Henderson, R.E. Shepherd and A.J. Abola, Inorg. Chem., 25, 1911 (1986).

    Google Scholar 

  42. R.A. Sanchez-Delgado, M. Navarro, K. Lazardi, R. Atencio, M. Capparelli, F. Vargas, J.A. Urbina, A. Bouillez, A.F. Noels and D. Masi, Inorg. Chim. Acta, 276, 528 (1998).

    Google Scholar 

  43. T. Ishiyama and T. Matsumura, Bull. Chem. Soc. Jpn., 52, 619 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slocik, J.M., Ward, M.S., Somayajula, K.V. et al. Coordination of RuCl3(NO)(H2O)2 by imidazole, histidine and iminodiacetate ligands: a study of complexation of 'Caged NO' by simple bio-cellular donors. Transition Metal Chemistry 26, 351–364 (2001). https://doi.org/10.1023/A:1007194314107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007194314107

Keywords

Navigation