Skip to main content
Log in

Mechanisms of resistance to pathogenesis in muscular dystrophies

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A mechanistic definition of the dystrophic process is proposed, and the effects of growth factors vs. down-regulation of growth are critically analyzed. A conceptual scheme is presented to illustrate the steps leading to pathology, and various compensatory systems which ameliorate the pathology are examined, particularly in regards to the mdx mouse which is resistant to the deficiency of dystrophin, the main protein product of the Duchenne and Becker muscular dystrophy (DMD/BMD) gene. These compensatory systems are analyzed in terms of the differential resistance of fiber types to pathogenesis. The generation of a stable population of maturationally arrested centronucleated fibers which express the mature adult myosin isoforms is proposed to be the main strategy of mdx muscle to minimize apoptosis. Physiological properties of these fibers, such as utrophin expression, and high mitochondrial and endoplasmic reticulum content, together with probable increased glycerophosphorylcholine concentrations and facile access to the vascular system, are hypothesized to be instrumental in their resistance to pathogenesis. It is proposed that the major element that determines the susceptibility of most human muscles to the dystrophic process is their inability to arrest the maturation of regenerated fibers at the centronucleated stage with a concomitant expression of the adult myosins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Partridge T: Animal models of muscular dystrophy – what can they teach us? Neuropathol Appl Neurobiol 17: 353–363, 1991

    PubMed  Google Scholar 

  2. Tidball JG, Albrecht DE, Lokensgard BE, Spencer MJ: Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108: 2197–2204, 1995

    PubMed  Google Scholar 

  3. Matsuda R, Nishikawa A, Tanaka H: Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue. J Biochem 118: 959–964, 1995

    PubMed  Google Scholar 

  4. Carraro U: Apoptotic death of dystrophic muscle fibers after exercise: A new hypothesis on the early events of muscle damage. Basic Appl Myol 5: 371–374, 1995

    Google Scholar 

  5. Tews DS, Goebel HH: DNA fragmentation and expression of apoptosisrelated proteins in muscular dystrophies. Neuropathol Appl Neurobiol 23: 331–338, 1997

    PubMed  Google Scholar 

  6. Brasseur G, Onolfo JP, Copin H, Leperchey F, Barbet JP: Dégénérescence et régénération des fibres musculaires striées squelettiques dans la myopathie de Duchenne. Bull Assoc Anat 81: 9–13, 1997

    Google Scholar 

  7. Miike T: Maturational defect of regenerating muscle fibers in cases with Duchenne and congenital muscular dystrophies. Muscle Nerve 6: 545–552, 1983

    PubMed  Google Scholar 

  8. Cullen MJ, Mastaglia FL: Morphological change in dystrophic muscle. Br Med Bull 36: 145–152, 1980

    PubMed  Google Scholar 

  9. Gardner-Medwin D, Walton J: The muscular dystrophies. In: J Walton, G Karpati, D Hilton-Jones (eds). Disorders of Voluntary Muscle. Churchill Livingstone, London, 1994, pp 543–594

    Google Scholar 

  10. Hoffman EP, Brown RH Jr, Kunkel LM: Dystrophin – the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–928, 1987

    PubMed  Google Scholar 

  11. McArdle A, Edwards RHT, Jackson MJ: How does dystrophin deficiency lead to muscle degeneration? Evidence from the mdx mouse. Neuromusc Disord 5: 445–456, 1995

    PubMed  Google Scholar 

  12. Sadoulet-Puccio HM, Kunkel LM: Dystrophin and its isoforms. Brain Pathol 6: 25–35, 1996

    PubMed  Google Scholar 

  13. Franco-Obregon A Jr, Lansman JB: Calcium entry through stretchinactivated ion channels in mdx myotubes. Nature 344: 670–673, 1990

    PubMed  Google Scholar 

  14. Hutter OF: The membrane hypothesis of Duchenne muscular dystrophy: Quest for functional evidence. J Inher Metab Dis 15: 565–577, 1992

    PubMed  Google Scholar 

  15. Sacco P, Jones DA, Dick JRT, Vrbova G: Contractile properties and susceptibility to exercise-induced damage of normal and mdx mouse tibialis anterior muscle. Clin Sci 82: 227–236, 1992

    PubMed  Google Scholar 

  16. McArdle A, Edwards RHT, Jackson MJ: Time course changes in plasma membrane permeability in the dystrophin-deficient mouse. Muscle Nerve 17: 1378–1384, 1994

    PubMed  Google Scholar 

  17. Massa R, Castellani L, Silvestri G, Sancesario G, Bernardi G: Dystrophin is not essential for the integrity of the cytoskeleton. Acta Neuropathol 87: 377–384, 1994

    PubMed  Google Scholar 

  18. McArdle A, Edwards RHT, Jackson MJ: Accumulation of calcium by normal and dystrophin-deficient mouse muscle during contractile activity in vitro. Clin Sci 82: 455–459, 1992

    PubMed  Google Scholar 

  19. Constantin B, Imbert N, Besse C, Cognard C, Raymond G: Cultured rat skeletal muscle cells treated with cytochalasin exhibit normal dystrophin expression and intracellular free calcium control. Biol Cell 85: 125–135, 1995

    PubMed  Google Scholar 

  20. Emery AEH: Some unanswered questions in Duchenne muscular dystrophy. Neuromusc Disord 4: 301–303, 1994

    PubMed  Google Scholar 

  21. Muntoni F, Gobbi P, Sewry C, Sherratt T, Taylor J, Sandhu SK, Abbs S, Roberts R, Hodgson SV, Bobrow M, Dubowitz V: Deletions in the 5′region of dystrophin and resulting phenotypes. J Med Genet 31: 843–847, 1994

    PubMed  Google Scholar 

  22. Angelini C, Fanin M, Freda MP, Martinello F, Miorin M, Melacini P, Siciliano G, Pegoraro E, Rosa M, Danieli GA: Prognostic factors in mild dystrophinopathies. J Neurol Sci 142: 70–78, 1996

    PubMed  Google Scholar 

  23. Infante JP, Huszagh VA: On the nature of the Duchenne muscular dystrophy locus: A portion of a complex of related gene clusters of recent pseudoautosomal origin? Mol Cell Biochem 81: 103–119, 1988

    PubMed  Google Scholar 

  24. Yaffe D, Nudel U, Greenberg D, Lederfein D, Rapaport D: The DMD gene: Search for function of its non-muscle products. Cell Pharmacol 3: 331–336, 1996

    Google Scholar 

  25. Lidov HGW, Byers TJ, Kunkel LM: The distribution of dystrophin in the murine central nervous system; an immunocytochemical study. Neuroscience 54: 167–187, 1993

    PubMed  Google Scholar 

  26. Lidov HGW: Dystrophin in the nervous system. Brain Pathol 6: 63–77, 1996

    PubMed  Google Scholar 

  27. Schmitz F, Drenckhahn D: Dystrophin in the retina. Progr Neurobiol 53: 547–560, 1997

    PubMed  Google Scholar 

  28. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlinson MG, Barnard PJ: The molecular basis of muscular dystrophy in the mdx mouse: A point mutation. Science 244: 1578–1580, 1989

    PubMed  Google Scholar 

  29. Krahn MJ, Anderson JE: Anabolic steroid treatment increases myofiber damage in mdx mouse muscular dystrophy. J Neurol Sci 125: 138–146, 1994

    PubMed  Google Scholar 

  30. Zatz M, Betti RTB, Levy JA: Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency. Am J Med Genet 10: 301–304, 1981

    PubMed  Google Scholar 

  31. Wu RH, Blethen SL, Chasalow FI, Spiro A, Buiumsohn A, Saenger P: Evidence for abnormal growth hormone in a boy with Duchenne muscular dystrophy and growth failure. Pediatr Res 23: 560-A only, 1988

    Google Scholar 

  32. Zatz M, Betti RTB: Benign muscular dystrophy in a patient with growth hormone deficiency: A five year follow-up. Am J Med Genet 24: 567–572, 1986

    PubMed  Google Scholar 

  33. Chyatte SB, Rudman D, Patterson JH, Gerron GC, O'Beirne I, Barlow J, Jordan A, Shavin JS: Human growth hormone and estrogens in boys with Duchenne muscular dystrophy. Arch Phys Med Rehab 54: 248–253, 1973

    Google Scholar 

  34. Totsuka T, Watanabe K, Kiyono S: Masking of a dystrophic symptom in genotypically dystrophic-dwarf mice. Proc Japan Acad 57B: 109–113, 1981

    Google Scholar 

  35. Anderson JE, Liu L, Kardami E: The effects of hyperthyroidism on muscular dystrophy in the mdx mouse: Greater dystrophy in cardiac and soleus muscle. Muscle Nerve 17: 64–73, 1994

    PubMed  Google Scholar 

  36. McArdle A, Catapano M, Davis A, Milburn S, Edwards RHT, Jackson MJ: Thyroid hormone mediates the acute phase of muscle degeneration in the dystrophin-deficient mdx mouse. J Physiol 489: 149P only, 1995

    Google Scholar 

  37. Bulfield G, Siller WG, Wight PAL, Moore KJ: X chromosome-1 inked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci 81: 1189–1192, 1984

    PubMed  Google Scholar 

  38. Tanabe Y, Esaki K, Nomura T: Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse. Acta Neuropathol 69: 91–95, 1986

    PubMed  Google Scholar 

  39. Simonides WS, van Hardeveld C: The postnatal development of sarcoplasmic reticulum calcium transport activity in skeletal muscle of the rat is critically dependent on thyroid hormone. Endocrinology 124: 1145–1153, 1989

    PubMed  Google Scholar 

  40. Kyosto JL, Nutting DF: Acute in vivo effects of growth hormone on protein synthesis in various tissues of hypophysectomized rats and their relationship to the levels of thymidine factor and insulin in the plasma. Horm Metab Res 5: 167–170, 1973

    PubMed  Google Scholar 

  41. Ullman M, Oldfors A: Effects of growth hormone on skeletal muscle. I. Studies on normal rats. Acta Physiol Scand 135: 531–536, 1989

    Google Scholar 

  42. Ullman M, Alameddine H, Skottner A, Oldfors A: Effects of growth hormone on skeletal muscle. II. Studies on regeneration and denervation in adult rats. Acta Physiol Scand 135: 537–543, 1989

    PubMed  Google Scholar 

  43. Hayes A, Williams DA: Long-term clenbuterol administration alters the isometric contractile properties of skeletal muscle from normal and dystrophin-deficient MDX mice. Clin Exp Pharmacol Physiol 21: 757–765, 1994

    PubMed  Google Scholar 

  44. Butler-Browne GS, Barbet JP, Thornell L-E: Myosin heavy and light chain expression during human skeletal muscle development and precocious muscle maturation induced by thyroid hormone. Anat Embryol 181: 513–522, 1990

    PubMed  Google Scholar 

  45. Fitts RH, Winder WW, Brooke MH, Kaiser KK, Holloszy JO: Contractile, biochemical, and histochemical properties of thyrotoxic rat soleus muscle. Am J Physiol 238: C15–C20, 1980

    Google Scholar 

  46. Nwoye L, Mommaerts WFHM, Simpson DR, Seraydarian K, Marusich M: Evidence for a direct action of thyroid hormone in specifying muscle properties. Am J Physiol 242: R401–R408, 1982

    Google Scholar 

  47. Thelen MHM, Simonides WS, Muller A, van Hardeveld C: Cross-talk between transcriptional regulation by thyroid hormone and myogenin: New aspects of the Ca2+-dependent expression of the fast-type sarcoplasmic reticulum Ca2+-ATPase. Biochem J 329: 131–136, 1998

    PubMed  Google Scholar 

  48. Webster C, Silberstein L, Hays AP, Blau HM: Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52: 503–514, 1988

    PubMed  Google Scholar 

  49. Minetti C, Ricci E, Bonilla E: Progressive depletion of fast α actininpositive muscle fibers in Duchenne muscular dystrophy. Neurology 41: 1977–1981, 1991

    PubMed  Google Scholar 

  50. McPherron AC, Lawler AM, Lee S-J: Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387: 83–90, 1977

    Google Scholar 

  51. Lefaucheur JP, Pastoret C, Sebille A: Phenotype of dystrophinopathy in old MDX mice. Anat Rec 242: 70–76, 1995

    PubMed  Google Scholar 

  52. Pastoret C, Sebille A: Mdx mice show progressive weakness and muscle deterioration with age. J Neurol Sci 129: 97–105, 1995

    PubMed  Google Scholar 

  53. Lynch GS, Rafael JA, Hinkle RT, Cole NM, Chamberlain JS, Faulkner JA: Contractile properties of diaphragm muscle segments from old mdx and old transgenic mdx mice. Am J Physiol 272: C2063–C2068, 1997

    PubMed  Google Scholar 

  54. Coulton GR, Morgan JE, Partridge TA, Sloper JC: The mdx mouse skeletal muscle myopathy. I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol 14: 53–70, 1988

    PubMed  Google Scholar 

  55. DiMario JX, Uzman A, Strohman RC: Fiber regeneration is not persistent in dystrophic mdx mouse skeletal muscle. Dev Biol 148: 314–321, 1991

    PubMed  Google Scholar 

  56. Mobley BA, Reddy YS, Feeback DL, Bodensteiner JB, Bokhari M, Robinson RD, Clark R: Control of myofibrillar ATPase activity and force in myodystrophic muscle. Muscle Nerve 8: 93–98, 1985

    PubMed  Google Scholar 

  57. Carnwath JW, Shotton DM: Muscular dystrophy in the mdx mouse. Histopathology of the soleus and extensor digitorum longus muscle. J Neurol Sci 80: 39–54, 1987

    PubMed  Google Scholar 

  58. Canale ED, Campbell GR, Smolich JJ, Campbell JH: Handbook of Microscopic Anatomy, vol. II/7: Cardiac Muscle. Springer-Verlag, Berlin, 1986, pp 8–14

    Google Scholar 

  59. Infante JP: Impaired biosynthesis of highly unsaturated phosphatidylcholines: A hypothesis on the molecular etiology of some muscular dystrophies. J Theor Biol 116: 65–88, 1985

    PubMed  Google Scholar 

  60. Martonosi A, Roufa D, Ha D-B, Boland R: The biosynthesis of sarcoplasmic reticulum. Fed Proc 39: 2415–2421, 1980

    PubMed  Google Scholar 

  61. Schmalbruch H: Handbook of Microscopic Anatomy, vol. II/6: Skeletal Muscle. Springer-Verlag, Berlin, 1985, pp 142–148, 159–221.

    Google Scholar 

  62. Cullen MJ, Jaros E: Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic mdx mouse: Comparison with Duchenne muscular dystrophy. Acta Neuropathol 77: 69–81, 1988

    PubMed  Google Scholar 

  63. Ferguson DG, Franzini-Armstrong C: The calcium ATPase content of slow and fast twitch fibers of guinea pig. Muscle Nerve 11: 561–570, 1988

    PubMed  Google Scholar 

  64. Karpati G, Carpenter S, Prescott S: Small-caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy. Muscle Nerve 11: 795–803, 1988

    PubMed  Google Scholar 

  65. Porter JD, Baker RS: Muscles of a different ‘color’: The unusual properties of the extraocular muscles may predispose or protect them in neurogenic and myogenic disease. Neurology 46: 30–37, 1996

    PubMed  Google Scholar 

  66. Coulton GR, Curtin NA, Morgan JE, Partridge TA: The mdx mouse skeletal muscle myopathy. II. Contractile properties. Neuropathol Appl Neurobiol 14: 299–314, 1988

    PubMed  Google Scholar 

  67. Mueller-Hoecker J, Pongratz D, Huebner G: Activation of mitochondrial ATPase as evidence of loosely coupled oxidative phosphorylation in various skeletal muscle disorders; a histochemical fine-structural study. J Neurol Sci 74: 199–214, 1986

    PubMed  Google Scholar 

  68. Wakai S, Minami R, Kameda K, Okabe M, Nagaoka M, Annaka S, Higashidate Y, Tomita H, Tachi N, Nobutada T: Electron microscopic study of the biopsied cardiac muscle in Duchenne muscular dystrophy. J Neurol Sci 84: 167–176, 1988

    PubMed  Google Scholar 

  69. Valentine BA, Cooper BJ, Cummings JF, de Lahunta A: Canine Xlinked muscular dystrophy morphologic lesions. J Neurol Sci 97: 1–23, 1990

    PubMed  Google Scholar 

  70. Bassani RA, Bassani JWM, Bers DM: Calcium cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes. J Physiol 460: 603–621, 1993

    PubMed  Google Scholar 

  71. Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG: Measurement of mitochondrial free calcium concentration in living single rat cardiac myocytes. Am J Physiol 261: H1123–H1134, 1991

    PubMed  Google Scholar 

  72. Drummond RM, Fay FS: Mitochondria contribute to Ca2+ removal in smooth muscle cells. Pflügers Arch 431: 473–482, 1996

    Google Scholar 

  73. Reddy PA, Anandavalli TE, Anandaraj MP: Calcium activated neutral proteases, milli and micro-CANP and endogenous CANP inhibitor of muscle in Duchenne muscular dystrophy. Clin Chim Acta 160: 281–288, 1986

    PubMed  Google Scholar 

  74. Turner PR, Westwood T, Regan AM, Skinhardt RA. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335: 735–738, 1988

    PubMed  Google Scholar 

  75. Spencer MJ, Tidball JG: Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res 203: 107–114, 1992

    PubMed  Google Scholar 

  76. Lindahl M, Backman E, Henriksson KG, Gorospe JR, Hoffman EP: Phospholipase A2 activity in dystrophinopathies. Neuromusc Disord 5: 193–199, 1995

    PubMed  Google Scholar 

  77. Khurana TS, Prendergast RA, Alameddine HS, Tome FMS, Fardeau M, Arahata K, Sugita H, Kunkel LM: Absence of extraocular muscle pathology in Duchenne's muscular dystrophy: Role for calcium homeostasis in extraocular muscle sparing. J Exp Med 182: 467–475, 1995

    PubMed  Google Scholar 

  78. Pappenheimer AM: Muscular dystrophy in mice on vitamin E-deficient diet. Am J Pathol 18: 169–175, 1942

    Google Scholar 

  79. Pappenheimer AM: On Certain Aspects of Vitamin E Deficiency. Charles C Thomas, Springfield, IL, 1948, pp 6–175

    Google Scholar 

  80. Prior TW, Bartolo C, Papp AC, Snyder PJ, Sedra MS, Burghes AHM, Kissel JT, Luquette MH, Tsao C-Y, Mendello JR: Dystrophin expression in a Duchenne muscular dystrophy patient with a frame shift deletion. Neurology 48: 486–488, 1997

    PubMed  Google Scholar 

  81. Morrone A, Zammarchi E, Scacheri PC, Donati MA, Hoop RC, Servidei S, Galluzzi G, Hoffman EP: Asymptomatic dystrophinopathy. Am J Med Genet 69: 261–267, 1997

    PubMed  Google Scholar 

  82. Armario I, Montero JL, Jolin T: Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid stimulating hormone. Ann Nutr Metab 31: 81–87, 1987

    PubMed  Google Scholar 

  83. Shorey CD, Manning LA, Grant AL, Everitt AV: Morphometrical analysis of the short term effects of hypophysectomy and food restriction on skeletal muscle fibers in relation to growth and aging changes in the rat. Growth Dev Aging 56: 85–93, 1992

    PubMed  Google Scholar 

  84. Love DR, Hill DF, Dickson G, Spurr NK, Byth BC, Marsden RF, Walsh FS, Edwards YH, Davies KE: An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339: 55–58, 1989

    PubMed  Google Scholar 

  85. Fardeau M, Tome FMS, Collin H, Augier N, Pons F, Leger J: Presence of a dystrophin-like protein at the neuromuscular junctions in Duchenne muscular dystrophy and in mdx mutant mice. C R Acad Sci [III] Paris 311: 197–204, 1990

    Google Scholar 

  86. Ohlendieck K, Ervasti JM, Matsumura K, Kahl SD, Leveille CJ, Campbell KP: Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 7: 499–508, 1991

    PubMed  Google Scholar 

  87. Helliwell TR, thi-Man N, Morris GE, Davies KE: The dystrophinrelated protein, utrophin, is expressed on the sarcolemma of regenerating human skeletal muscle fibres in dystrophies and inflammatory myopathies. Neuromusc Disord 2: 177–184, 1992

    PubMed  Google Scholar 

  88. Karpati G, Carpenter S, Morris GE, Davies KE, Guerin C, Holland P: Localization and quantitation of the chromosome 6-encoded dystrophin-related protein in normal and pathological human muscle. J Neuropathol Exp Neurol 52: 119–128, 1993

    PubMed  Google Scholar 

  89. Tinsley JM, Potter AC, Phelps SR, Fisher R, Trickett JI, Davies KE: Ameliorization of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384: 349–353, 1996

    PubMed  Google Scholar 

  90. Deconinck AE, Tinsley J, DeBacker F, Fisher R, Kahn D, Phelps S, Davies K, Gillis JM: Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nature Med 3: 1216–1221, 1997

    PubMed  Google Scholar 

  91. Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM, Davies KE: Utrophindystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90: 717–727, 1997

    PubMed  Google Scholar 

  92. Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR: Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: A model for Duchenne muscular dystrophy. Cell 90: 729–738, 1997

    PubMed  Google Scholar 

  93. Pons F, Robert A, Marini JF, Leger JJ: Does utrophin expression in muscles of mdx mice during postnatal development functionally compensate for dystrophin deficiency? J Neurol Sci 122: 162–170, 1994

    PubMed  Google Scholar 

  94. Dick J, Vrbova G: Progressive deterioration of muscles in mdx mice induced by overload. Clin Sci 84: 145–150, 1993

    PubMed  Google Scholar 

  95. Vainzof M, Passos-Bueno MR, thi-Man N, Zatz M: Absence of correlation between utrophin localization and quantity and the clinical severity in Duchenne-Becker dystrophies. Am J Med Genet 58: 305–309, 1995

    PubMed  Google Scholar 

  96. Taylor J, Muntoni F, Dubowitz V, Sewry CA: The abnormal expression of utrophin in Duchenne and Becker muscular dystrophy is age related. Neuropathol Appl Neurobiol 23: 399–405, 1997

    PubMed  Google Scholar 

  97. deLapeyriere O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier F, Birnbaum D: Expression of the FGF-6 gene is restricted to developing skeletal muscle in the mouse embryo. Development 118: 601–611, 1993

    PubMed  Google Scholar 

  98. Floss T, Hans-Henning A, Braun T: A role for FGF-6 in skeletal muscle regeneration. Genes Develop 11: 2040–2051, 1997

    PubMed  Google Scholar 

  99. Deconinck AE, Potter AC, Tinsley JM, Wood SJ, Vater R, Young C, Metzinger L, Vincent A, Slater CR, Davies KE: Postsynaptic abnormalities at the neuromuscular junctions of utrophin-deficient mice. J Cell Biol 136: 883–894, 1997

    PubMed  Google Scholar 

  100. Grady RM, Merlie JP, Sanes JR: Subtle neuromuscular defects in utrophin-deficient mice. J Cell Biol 136: 871–882, 1997

    PubMed  Google Scholar 

  101. Burt CT, Glonek T, Barany M: Phosphorus-31 nuclear magnetic resonance detection of unexpected phosphodiesters in muscle. Biochemistry 15: 4850–4853, 1976

    PubMed  Google Scholar 

  102. Uhrin P, Liptaj T: Phosphorus-31 NMR study of phosphorus metabolites in fast and slow muscles. Int J Biochem 22: 1133–1138, 1990

    PubMed  Google Scholar 

  103. Burt CT, Pluskal MG, Sreter FA: Generation of phosphodiesters during fast-to-slow muscle transformation. A 31P-NMR study. Biochim Biophys Acta 721: 492–494, 1982

    PubMed  Google Scholar 

  104. Renou J-P, Canioni P, Gatelier P, Valin C, Cozzone J: Phosphorus-31 NMR study of post-mortem catabolism and intracellular pH in intact excised rabbit muscle. Biochimie 68: 543–554, 1986

    PubMed  Google Scholar 

  105. Wolff SD, Balaban RS: Regulation of the predominant renal medullary organic solutes in vivo. Annu Rev Physiol 52: 727–746, 1990

    PubMed  Google Scholar 

  106. Garcia-Perez A, Burg MB: Renal medullary organic osmolytes. Physiol Rev 71: 1081–1116, 1991

    PubMed  Google Scholar 

  107. Sizeland PCB, Chambers ST, Lever M, Bason LM, Robson RA: Organic osmolytes in human and other mammalian kidneys. Kidney Int 43: 448–453, 1993

    PubMed  Google Scholar 

  108. Wirthensohn G, Beck F-X, Guder WG: Role and regulation of glycerophosphorylcholine in rat renal papilla. Pflügers Arch 409: 411–415, 1987

    Google Scholar 

  109. Burt CT, Ribolow H: Glycerol phosphorylcholine (GPC) and serine ethanolamine phosphodiester (SEP): Evolutionary mirrored metabolites and their potential metabolic roles. Comp Biochem Physiol 108B: 11–20, 1994

    Google Scholar 

  110. Toth IE, Infante JP, Bruckner GG: Glycerophosphorylcholine is synthesized de novo by kidney mitochondria. FASEB J 9: A470, 1995

    Google Scholar 

  111. Infante JP: De novo sn-glycerol-3-phosphorylcholine synthetase activity in lung and muscle and its subcellular location. Mol Cell Biochem 71: 135–137, 1986

    PubMed  Google Scholar 

  112. Schliselfeld LH, Barany M, Danon MJ, Abraham E, Kleps RA: Lysolecithin phospholipase activities of muscles from control and Duchenne muscular dystrophy subjects. Mol Physiol 1: 61–69, 1981

    Google Scholar 

  113. Newman RJ, Bore PJ, Chan L, Gadian DG, Styles P, Taylor D, Radda GK: Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Br Med J 284: 1072–1074, 1982

    Google Scholar 

  114. Younkin DP, Berman P, Sladky J, Chee C, Bank W, Change B: Phosphorus-31 NMR studies in Duchenne muscular dystrophy: Agerelated metabolic changes. Neurology 37: 165–169, 1987

    PubMed  Google Scholar 

  115. Chalovich JM, Burt CT, Danon MJ, Glonek T, Barany M: Phosphodiesters in muscular dystrophies. Ann NY Acad Sci 317: 649–668, 1979

    PubMed  Google Scholar 

  116. Herrmann FH, Spiegler A, Wiedemann G: Muscle provocation test. A sensitive method for discrimination between carriers and noncarriers of Duchenne muscular dystrophy. Hum Genet 61: 102–104, 1982

    PubMed  Google Scholar 

  117. Amelink GJ, Bar RP: Exercise-induced muscle protein leakage in the rat: Effects of hormonal manipulation. J Neurol Sci 76: 61–68, 1986

    PubMed  Google Scholar 

  118. McNeil PL, Khakee R: Disruptions of muscle fiber plasma membranes: role in exercise-induced damage. Am J Pathol 140: 1097–1109, 1992

    PubMed  Google Scholar 

  119. Griffiths PD: Serum levels of ATP:creatine phosphotransferase (creatine kinase). The normal range and effect of muscular activity. Clin Chim Acta 13: 413–420, 1966

    PubMed  Google Scholar 

  120. Jackson MJ, Round JM, Newham DJ, Edwards RHT: An examination of some factors influencing creatine kinase in the blood of patients with muscular dystrophy. Muscle Nerve 10: 15–21, 1987

    PubMed  Google Scholar 

  121. Zatz M, Shapiro LJ, Campion DS, Kaback MM, Otto PA: Serum pyruvate-kinase (PK) and creatine-phosphokinase (CPK) in female relatives and patients with X-linked muscular dystrophies (Duchenne and Becker). J Neurol Sci 46: 267–279, 1980

    PubMed  Google Scholar 

  122. Infante JP: Biosynthesis of acyl-specific glycerophospholipids in mammalian tissues. Postulation of new pathways. FEBS Lett 170: 1–14, 1984

    PubMed  Google Scholar 

  123. Infante JP, Huszagh VA: On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders. Mol Cell Biochem 168: 101–115, 1997

    PubMed  Google Scholar 

  124. Iwata Y, Nakamura H, Fujiwara K, Shigekawa M: Altered membrane dystrophin association in the cardiomyopathic hamster heart muscle. Biochem Biophys Res Commun 190: 589–595, 1993

    PubMed  Google Scholar 

  125. Iwata Y, Nakamura H, Mizuno Y, Yoshida M, Ozawa E, Shigekawa M: Defective association of dystrophin with sarcolemmal glycoproteins in the cardiomyopathic hamster heart. FEBS Lett 329: 227–231, 1993

    PubMed  Google Scholar 

  126. Okamoto H, Kawaguchi H, Sano H, Kageyama K, Kudo T, Koyama T, Kitabatake A: Microdynamics of the phospholipid bilayer in cardiomyopathic hamster heart cell membrane. J Mol Cell Cardiol 26: 211–218, 1994

    PubMed  Google Scholar 

  127. Roberts RG: Dystrophin, its gene, and the dystrophinopathies. Adv Genet 33: 177–231, 1995

    PubMed  Google Scholar 

  128. Tracey I, Dunn JF, Parkes HG, Radda GK: An in vivo and in vitro 1Hmagnetic resonance spectroscopy study of mdx mouse brain: Abnormal development or neural necrosis? J Neurol Sci 141: 13–18, 1996

    PubMed  Google Scholar 

  129. Kato T, Nishina M, Matsushita K, Hori E, Akaboshi S, Takashima S: Increased cerebral choline-compounds in Duchenne muscular dystrophy. Neuroreport 8: 1435–1437, 1997

    PubMed  Google Scholar 

  130. Neuringer M, Anderson GJ, Connor WE: The essentiality of n-3 fatty acids for the development and function of the retina and brain. Ann Rev Nutr 8: 517–541, 1988

    Google Scholar 

  131. Kunze D, Reichmann G, Egger E, Leuschner G, Eckhardt H: Erythrozytenlipide bei progressiver muskeldystrophie. Clin Chim Acta 43: 331–341, 1973

    Google Scholar 

  132. Banerjee AK, Goyle S: Altered lipid composition of adipose tissue in human muscular dystrophy. Biochem Med 30: 246–252, 1983

    PubMed  Google Scholar 

  133. Dubowitz V: Involvement of the nervous system in muscular dystrophies in man. Ann NY Acad Sci 317: 431–438, 1979

    PubMed  Google Scholar 

  134. Glaub T, Mechler F: Intellectual function in muscular dystrophies. Eur Arch Psychiatry Neurol Sci 236: 379–382, 1987

    PubMed  Google Scholar 

  135. Jagadha V, Becker LE: Brain morphology in Duchenne muscular dystrophy: A golgi study. Pediatr Neurol 4: 87–92, 1988

    PubMed  Google Scholar 

  136. Cibis GW, Fitzgerald KM, Harris DJ, Rothberg PG, Rupani M: The effects of dystrophin gene mutations on the ERG in mice and humans. Invest Ophthalmol Vis Sci 34: 3646–3652, 1993

    PubMed  Google Scholar 

  137. Pillers DAM, Bulman DE, Weleber RG, Sigesmund DA, Musrella MA, Powell BR, Murphey WH, Westall C, Panton C, Becker LE, Worton RG, Ray PN: Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nature Genet 4: 82–86, 1993

    PubMed  Google Scholar 

  138. Girlanda P, Quartarone A, Buceti R, Sinicropi S, Macaione V, Saad FA, Messina L, Danieli GA, Ferreri G, Vita G: Extra-muscle involvement in dystrophinopathies: An electroretinography and evoked potential study. J Neurol Sci 146: 127–132, 1997

    PubMed  Google Scholar 

  139. Watkins SC, Hoffman EP, Slayter HS, Kunkel LM: Immunoelectron microscopic localization of dystrophin in myofibres. Nature 333: 863–866, 1988

    PubMed  Google Scholar 

  140. Iwata Y, Pan Y, Hanada H, Yoshida T, Shigekawa M: Dystrophinglycoprotein complex purified from hamster cardiac muscle. Comparison of the complexes from cardiac and skeletal muscles of hamster and rabbit. J Mol Cell Cardiol 28: 2501–2509, 1996

    PubMed  Google Scholar 

  141. Wessels A, Ginjaar IB, Moorman AFM, Van Ommen GB: Different localization of dystrophin in developing and adult human skeletal muscle. Muscle Nerve 14: 1–7, 1991

    PubMed  Google Scholar 

  142. Ho-Kim MA, Rogers PA: Quantitative analysis of dystrophin in fast-and slow-twitch mammalian skeletal muscle. FEBS Lett 304: 187–191, 1992

    PubMed  Google Scholar 

  143. Infante JP: Docosahexaenoate-containing phospholipids in sarcoplasmic reticulum and retinal photoreceptors. A proposal for a role in Ca2+-ATPase calcium transport. Mol Cell Biochem 74: 111–116, 1987

    Google Scholar 

  144. Turner PR, Westwood T, Regen CM, Steinhardt RA: Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335, 735–738, 1988

    PubMed  Google Scholar 

  145. Kargacin ME, Kargacin GJ: The sarcoplasmic reticulum calcium pump is functionally altered in dystrophic muscle. Biochim Biophys Acta 1290: 4–8, 1996

    PubMed  Google Scholar 

  146. Dunn JF, Burton KA, Dauncey MJ: Ouabain sensitive Na+-K+-ATPase content is elevated in mdx mice: Implications for the regulation of ions in dystrophic muscle. J Neurol Sci 133: 11–15, 1995

    Google Scholar 

  147. Infante JP: Defective synthesis of glycerophosphorylcholine in murine muscular dystrophy; the primary molecular lesion? FEBS Lett 186: 205–210, 1985

    Google Scholar 

  148. Tan MH, Sata T, Havel R: The significance of lipoprotein lipase in rat skeletal muscles. J Lipid Res 18: 363–370, 1977

    PubMed  Google Scholar 

  149. Ong JM, Simsolo RB, Saghizadeh M, Pauer A, Kern PA: Expression of lipoprotein lipase in rat muscle: Regulation by feeding and hypothyroidism. J Lipid Res 35: 1542–1551, 1994

    Google Scholar 

  150. Schmalbruch H: Manifestations of regeneration in myopathic muscles. In: A Mauro (ed). Muscle Regeneration. Raven Press, New York, 1979, pp 201–213

    Google Scholar 

  151. Hall-Craggs ECB: Ischemic muscle as a model of regeneration. Exp Neurol 60: 393–399, 1978

    Google Scholar 

  152. Mirabella M, Alvarez RB, Engel WK, Weisgraber KH, Askanas V: Apolipoprotein E and apolipoprotein E messenger RNA in muscle of inclusion body myositis and myopathies. Ann Neurol 40: 864–872, 1996 167

    Google Scholar 

  153. Ignatius MJ, Gebicke-Härter PJ, Skene JHP, Schilling JW, Weisgraber KH, Mahley RW, Shooter EM: Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci USA 83: 1125–1129, 1986

    Google Scholar 

  154. Horsburgh K, Fitzpatrick M, Nilsen M, Nicoll JAR: Marked alterations in the cellular localisation and levels of apolipoprotein E following acute subdural haematoma in rat. Brain Res 763: 103–110, 1997

    PubMed  Google Scholar 

  155. Boyles JK, Notterpek LM, Anderson LJ: Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. J Biol Chem 265: 17805–17815, 1990

    PubMed  Google Scholar 

  156. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N: Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89: 4471–4475, 1992

    PubMed  Google Scholar 

  157. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71: 343–353, 1992

    PubMed  Google Scholar 

  158. Valentine BA, Cooper BJ, de Lahunta A, O'Quinn R, Blue JT: Canine X-linked muscular dystrophy; an animal model of Duchenne muscular dystrophy. Clinical studies. J Neurol Sci 88: 69–81, 1988

    PubMed  Google Scholar 

  159. Amelink GJ, Kamp HH, Bar PR: Creatine kinase isoenzyme profiles after exercise in the rat; sex-linked differences in leakage of CK-MM. Pflügers Arch 412: 417–421, 1988

    Google Scholar 

  160. Van der Meulen JH, Kuipers H, Drukker J: Relationship between exercise-induced muscle damage and enzyme release in rats. J Appl Physiol 71: 999–1004, 1991

    PubMed  Google Scholar 

  161. Shumate JB, Brooke MH, Carroll JE, Davis JE: Increased serum creatine kinase after exercise: A sex-linked phenomenon. Neurology 29: 902–904, 1979

    PubMed  Google Scholar 

  162. Dempsey R, Morgan J, Cohen L: Reduction of enzyme efflux from skeletal muscle by diethylstilbestrol. Clin Pharmacol Ther 18: 104–111, 1975

    PubMed  Google Scholar 

  163. Cohen L, Morgan J: Diethylstilbestrol effects on serum enzymes and isozymes in muscular dystrophy. Arch Neurol 33: 480–484, 1976

    PubMed  Google Scholar 

  164. Lyman RL, Tinoco J, Bouchard P, Sheehan G, Ostwald R, Miljanich P: Sex differences in the metabolism of phosphatidylcholines in rat liver. Biochim Biophys Acta 137: 107–114, 1967

    PubMed  Google Scholar 

  165. Lyman RL, Hopkins SM, Sheenan G, Tinoco J: Effects of estradiol and testosterone on the incorporation and distribution of [Me-14C]methionine methyl in rat liver lecithins. Biochim Biophys Acta 152: 197–207, 1968

    PubMed  Google Scholar 

  166. Pudelkewicz C, Seufert J, Holman RT: Requirements of the female rat for linoleic and linolenic acids. J Nutrition 94: 138–146, 1968

    Google Scholar 

  167. Nigro G, Comi LI, Politano L, Bain RJI: The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 26: 271–277, 1990

    PubMed  Google Scholar 

  168. Carpenter S, Karpati G: Duchenne muscular dystrophy. Plasma membrane loss initiates muscle cell necrosis unless it is repaired. Brain 102: 147–161, 1979

    Google Scholar 

  169. Rapisarda R, Muntoni F, Gobbi P, Dubowitz V: Duchenne muscular dystrophy presenting with failure to thrive. Arch Dis Child 72: 437–438, 1995

    PubMed  Google Scholar 

  170. Zatz M, Rapaport D, Vainzof M, Rocha JML, Pavanello R de C, Colletto GM, Peres CA: Relation between height and clinical course in Duchenne muscular dystrophy. Am J Med Genet 29: 405–410, 1988

    PubMed  Google Scholar 

  171. Wolf U: The genetic contribution to the phenotype. Hum Genet 95: 127–148, 1995

    PubMed  Google Scholar 

  172. Wolf U: Identical mutations and phenotypic variation. Hum Genet 100: 305–321, 1997

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Infante, J.P., Huszagh, V.A. Mechanisms of resistance to pathogenesis in muscular dystrophies. Mol Cell Biochem 195, 155–167 (1999). https://doi.org/10.1023/A:1006972315739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006972315739

Navigation