Skip to main content
Log in

Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Lignins are phenolic biopolymers synthesized by terrestrial, vascular plants for mechanical support and in response to pathogen attack. Peroxidases have been proposed to catalyse the dehydrogenative polymerization of monolignols into lignins, although no specific isoenzyme has been shown to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover, an Arabidopsis mutant with increased lignin levels compared to wild type shows increased levels of ATP A2 mRNA and of a mRNA encoding an enzyme upstream in the lignin biosynthetic pathway. The substrate specificity of ATP A2 was analysed by X-ray crystallography and docking of lignin precursors. The structure of ATP A2 was solved to 1.45 Å resolution at 100 K. Docking of p-coumaryl, coniferyl and sinapyl alcohol in the substrate binding site of ATP A2 were analysed on the basis of the crystal structure of a horseradish peroxidase C-CN-ferulic acid complex. The analysis indicates that the precursors p-coumaryl and coniferyl alcohols are preferred by ATP A2, while the oxidation of sinapyl alcohol will be sterically hindered in ATP A2 as well as in all other plant peroxidases due to an overlap with the conserved Pro-139. We suggest ATP A2 is involved in a complex regulation of the covalent cross-linking in the plant cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barkholt, V. and Jensen, A.L. 1989. Amino acid analysis: dertermination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal. Biochem. 177: 318–322.

    PubMed  Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G.X. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis plants. C. R. Acad. Sci. Paris. Life Sci. 316: 1194–1199.

    Google Scholar 

  • Bernards, M.A., Fleming, W.D., Llewellyn, D.B., Priefer, R., Yang, X., Sabatino, A. and Plourde, G.L. 1999. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol. 121: 135–146.

    PubMed  Google Scholar 

  • Boudet, A.M., Lapierre, C. and Grima-Pettenati, J. 1995. Biochemistry and molecular biology of lignification. New Phytol. 129: 203–236.

    Google Scholar 

  • Chabanet, A., Catesson, A.M. and Goldberg, R. 1993. Peroxidase and phenolase activities in mung bean hypocotyl cell walls. Phytochemistry 33: 759–763.

    Google Scholar 

  • Chabanet, A., Goldberg, R., Catesson, A.M., Quinet-Szely, M., Delaunay, A.M. and Faye, L. 1994. Characterization and localization of a phenol oxidase in mung bean hypocotyl cell walls. Plant Physiol. 106: 1095–1102.

    PubMed  Google Scholar 

  • Church, D.L. and Galston, A.W. 1988. 4-Coumarate:coenzyme A ligase and isoperoxidase expression in Zinnia mesophyl cells induced to differentiate into tracheary elements. Plant Physiol. 88: 679–684.

    PubMed  Google Scholar 

  • Dunford, H.B. 1991. Horseradish peroxidase: structure and kinetic properties. In: J. Everse and M.B. Grisham (Eds.) Peroxidases in Chemistry and Biology, CRC Press, Boca Raton, FL, pp. 1–24.

    Google Scholar 

  • Edwards, S.L. and Poulos, T.L. 1990. Ligand binding and structural perturbations in cytochrome c peroxidase: a crystallographic study. J. Biol. Chem. 265: 2588–2595.

    PubMed  Google Scholar 

  • Engh, R.A. and Huber, R. 1991. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A47: 392–400.

    Google Scholar 

  • Finzel, B.C., Poulos, T.L. and Kraut, J. 1984. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-Å resolution. J. Biol. Chem. 259: 13027–13036.

    PubMed  Google Scholar 

  • Fukuyama, K., Kunishima, N., Amada, F., Kubota, T. and Matsubara, H. 1995. Crystal structures of cyanide-and triiodide-bound forms of Arthromyces ramosus peroxidase at different pH values. Perturbations of active site residues and their implication in enzyme catalysis. J. Biol. Chem. 270: 21884–21892.

    PubMed  Google Scholar 

  • Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T. and Poulos, T.L. 1997. Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nature Struct. Biol. 4: 1032–1038.

    PubMed  Google Scholar 

  • Gang, D.R., Costa, M.A., Fujita, M., Dinkova-Kostova, A.T., Wang, H.-B., Burlat, V., Martin, W., Sarkanen, S., Davin, L.B. and Lewis, N.G. 1999. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem. Biol. 6: 143–151.

    Article  PubMed  Google Scholar 

  • Gazarian, I.G., Ashby, G.A., Thorneley, R.N.F. and Lagrimini, L.M. 1996. Study of indole-3-acetic acid oxidation by molecular oxygen catalyzed by horseradish and tobacco peroxidases. In: C. Obinger, U. Burner, R. Ebermann, C. Penel, and H. Greppin (Eds.) Plant Peroxidases: Biochemistry and Physiology, University of Geneva, Geneva, pp. 70–75.

    Google Scholar 

  • Glusker, J.P. 1991. Structural aspects of ligand binding to functional groups in proteins. Adv. Protein Chem. 42: 1–76.

    PubMed  Google Scholar 

  • Henriksen, A., Schuller, D.J., Meno, K., Welinder, K.G., Smith, A.T. and Gajhede, M. 1998. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry 37: 8054–8060.

    PubMed  Google Scholar 

  • Henriksen, A., Smith, A.T. and Gajhede, M. 1999. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates. J. Biol. Chem. 274: 35005–35011.

    PubMed  Google Scholar 

  • Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nucl. Acids Res. 27: 297–300.

    PubMed  Google Scholar 

  • Ito, H., Hiraga, S., Tsugawa, H., Matsui, H., Honma, M., Otsuki, Y., Murakami, T. and Ohashi, Y. 2000. Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Plant Sci. 155: 85–100.

    PubMed  Google Scholar 

  • Itzhaki, H., Maxson, J.M. and Woodson, W.R. 1994. An ethyleneresponsive enhancer element is involved in the senescencerelated expression of the carnation glutathione-S-transferase (GST1) gene. Proc. Natl. Acad. Sci. USA 91: 8925–8929.

    PubMed  Google Scholar 

  • Jabs, T., Dietrich, R.A. and Dangl, J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856.

    PubMed  Google Scholar 

  • Jones, A., Zou, J.Y., Cowan, S.W. and Kjeldgaard, M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these maps. Acta Crystallogr. A47: 110–119.

    Google Scholar 

  • Kraulis, P.J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950.

    Google Scholar 

  • Lacombe, E., Hawkins, S., Doorsselaere, J.V., Piquemal, J., Goffner, D., Poeydomenge, O., Boudet, A.M. and Grima-Pettenati, J. 1997. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11: 429–441.

    PubMed  Google Scholar 

  • Lagrimini, L.M. 1996. The role of the tobacco anionic peroxidase in growth and development. In: C. Obinger, U. Burner, R. Ebermann, C. Penel, and H. Greppin (Eds.) Plant Peroxidases: Biochemistry and Physiology, University of Geneva, Geneva, pp. 235–242.

    Google Scholar 

  • Lagrimini, L.M., Burkhart, W., Moyer, M. and Rothstein, S. 1987. Molecular cloning of a complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. USA. 84: 7542–7546.

    Google Scholar 

  • Lagrimini, L.M., Joly, R.J., Dunlap, J.R. and Liu, T.-T.Y. 1997. The consequence of peroxidase overexpression in transgenic plants on growth and development. Plant Mol. Biol. 33: 887–895.

    PubMed  Google Scholar 

  • Lee, D., Ellard, M., Wanner, L.A., Davis, K.R. and Douglas, C.J. 1995. The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol. Biol. 28: 871–884.

    PubMed  Google Scholar 

  • Lewis, N.G., Davin, L.B. and Sarkanen, S. 1999. The nature and function of lignins. In: P.M. Pinto (Ed.) Carbohydrates and their Derivatives Including Tannins, Cellulose and Related Lignins, Elsevier, Amsterdam, pp. 617–745.

    Google Scholar 

  • Lewis, N.G. and Yamamoto, E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 455–496.

    PubMed  Google Scholar 

  • Li, L., Popko, J.L., Zhang, X.-H., Osakabe, K., Tsai, C.-J., Joshi, C.P. and Chiang, V.L. 1997. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc. Natl. Acad. Sci. USA 94: 5461–5466.

    PubMed  Google Scholar 

  • Merritt, E.A. and Bacon, D.J. 1997. Raster3D: photorealistic molecular graphics. Meth. Enzymol. 277: 505–524.

    Google Scholar 

  • Milanesi, L., Muselli and Arrigo, P. 1996. Hamming clustering method for signals prediction in 5' and 3' regions of eukaryotic genes. Comput. Appl. Biosci. 12: 399–404.

    PubMed  Google Scholar 

  • Millar, A.J., Short, S.R., Chua, N.-H. and Kay, S.A. 1992. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4: 1075–1087.

    Article  PubMed  Google Scholar 

  • Mohan, R., Bajar, A.M. and Kolattukudy, P.E. 1993. Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Plant Mol. Biol. 21: 341–354.

    PubMed  Google Scholar 

  • Montgomery, J., Goldman, S., Deikman, J., Margossian, L. and Fisher, R.L. 1993. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Natl. Acad. Sci. USA 90: 5939–5943.

    PubMed  Google Scholar 

  • Mundy, J., Mayer, R. and Chua, N.-H. 1995. Cloning genomic sequences using long-range PCR. Plant Mol. Biol. 13: 156–163.

    Google Scholar 

  • Mäder, M. and Füssl, R. 1982. Role of peroxidase in lignification of tobacco cells. Plant Physiol. 70: 1132–1134.

    Google Scholar 

  • Nagy, F., Kay, S.A. and Chua, N.-H. 1988. Analysis of gene expression in transgenic plants. In: S.B. Gelvin and R.A. Schilperoort (Eds.) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1–29.

    Google Scholar 

  • Nakamura, W. 1967. Studies of the biosynthesis of lignins. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J. Biochem. 62: 54–61.

    PubMed  Google Scholar 

  • Navaza, J. 1994. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50: 157–163.

    Google Scholar 

  • Nose, M., Bernards, M.A., Furlan, M., Zajicek, J., Eberhardt, T.L. and Lewis, N.G. 1995. Towards the specification of consecutive steps in macromolecular lignin assembly. Phytochemistry 39: 71–79.

    PubMed  Google Scholar 

  • Ogawa, K., Kanematsu, S. and Asada, K. 1996. Intra-and extracellular localization of 'cytosolic' CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant Cell Physiol. 37: 790–799.

    Google Scholar 

  • Ogawa, K., Kanematsu, S. and Asada, K. 1997. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vacular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 38: 1118–1126.

    PubMed  Google Scholar 

  • Olson, P.D. and Varner, J.E. 1993. Hydrogen peroxide and lignification. Plant J. 4: 887–892.

    Google Scholar 

  • Østergaard, L., Abelskov, A.K., Mattsson, O. and Welinder, K.G. 1996. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture. FEBS Lett. 398: 243–247.

    PubMed  Google Scholar 

  • Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol 276: 307–326.

    Google Scholar 

  • Piquemal, J., Lapierre, C., Myton, K., O'Connell, A., Schuch, W., Grima-Pettenati, J. and Boudet, A.M. 1998. Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13: 71–83.

    Google Scholar 

  • Poulos, T.L., Edwards, S.L., Wariishi, H. and Gold, M.H. 1993. Crystallographic refinement of lignin peroxidase at 2 Å. J. Biol. Chem. 268: 4429–4440.

    PubMed  Google Scholar 

  • Quiroga, M., Guerrero, C., Botella, M.A., Barceló, A., Amaya, I., Medina, M.I., Alonso, F.J., de Forchetti, S.M., Tigier, H. and Valpuesta, V. 2000. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122: 1119–1127.

    PubMed  Google Scholar 

  • Ruch, F. and Bosshardt, U. 1963. Photometrische Bestimmung von Stoffmengen im Fluoreszenz Mikroskop. Z. Wiss. Mikrosk. Mikrosk. Techn. 65: 335–341.

    Google Scholar 

  • Sato, Y., Sugiyama, M., Komamine, A. and Fukuda, H. 1995. Separation and characterization of the isozymes of wall-bound peroxidase from cultured Zinnia cells during tracheary element differentiation. Planta 196: 141–147.

    Google Scholar 

  • Shannon, L.M., Kay, E. and Lew, J.Y. 1966. Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem. 241: 2166–2172.

    PubMed  Google Scholar 

  • Sheldrick, G.M. and Schneider, T.R. 1997. SHELXL: highresolution refinement. Meth. Enzymol. 277B: 319–343.

    Google Scholar 

  • Smith, C.G., Rodgers, M.W., Zimmerlin, A., Ferdinando, D. and Bolwell, G.P. 1994. Tissue and subcellular immunolocalisation of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta 192: 155–164.

    Article  Google Scholar 

  • Smulevich, G., Paoli, M., Burke, J.F., Sanders, S.A., Thorneley, R.-N.F. and Smith, A.T. 1994. Characterization of recombinant horseradish peroxidase C and three site-directed mutants F41V, F41W, and R38K, by resonance Raman spectroscopy. Biochemistry 33: 7398–7407.

    PubMed  Google Scholar 

  • Sterjiades, R., Dean, J.F., Gamble, G., Himmelsbach, D.S. and Eriksson, K.-E.L. 1999. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Planta 190: 75–87.

    Google Scholar 

  • Sundaramoorthy, M., Kishi, K., Gold, M.H. and Poulos, T.L. 1994. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Å resolution. J. Biol. Chem. 269: 32759–32767.

    PubMed  Google Scholar 

  • Sundaresan, V., Springer, P., Volpe, T., Jones, J.D.G., Dean, C., Ma, H. and Martienssen, R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797–1810.

    PubMed  Google Scholar 

  • Takahama, U. 1995. Oxidation of hydroxycinnamic acid and hydroxycinnamyl alcohol derivatives by laccase and peroxidase. Interactions among p-hydroxyphenyl, guaiacyl and syringyl groups during the oxidation reaction. Physiol. Plant. 93: 61–68.

    Google Scholar 

  • Takahama, U. and Oniki, T. 1994. Effects of ascorbate on oxidation of hydroxycinnamic acid derivatives and the mechanism of oxidation of sinapic acid by cell wall bound peroxidases. Plant Cell Physiol. 35: 593–600.

    Google Scholar 

  • Teilum, K., Østergaard, L. and Welinder, K.G. 1999. Disulfide bond formation and folding of plant peroxidases expressed as inclusion body protein in Escherichia coli thioredoxin reductase negative strains. Protein Expr. Purif. 15: 77–82.

    PubMed  Google Scholar 

  • Whetten, R.W., MacKay, J.J. and Sederoff, R.R. 1998. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 49: 585–609.

    PubMed  Google Scholar 

  • Yamazaki, I., Nakajima, R. 1986. Physico-chemical comparison between horseradish peroxidases A and C. In: H. Greppin, C. Penel and Th. Gaspar (Eds.) Molecular and Physiological Aspects of Plant Peroxidases, University of Geneva, Geneva, pp. 71–84.

    Google Scholar 

  • Ye, Z.-H., Kneusel, R.E., Matern, U. and Varner, J.E. 1994. An alternative methylation pathway in lignin biosynthesis in Zenia. Plant Cell 6: 1427–1439.

    Article  PubMed  Google Scholar 

  • Zhong, R., Morrison, H. III, Negrel, J. and Ye, Z.-H. 1998. Dual methylation pathways in lignin biosynthesis. Plant Cell 10: 2033–2045.

    PubMed  Google Scholar 

  • Zimmerlin, A., Wojtaszek, P. and Bolwell, G.P. 1994. Synthesis of dehydrogenation polymers of ferulic acid with high specificity by a purified cell-wall peroxidase from French bean (Phaseolus vulgaris L.). Biochem. J. 299: 747–753.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Østergaard, L., Teilum, K., Mirza, O. et al. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol 44, 231–243 (2000). https://doi.org/10.1023/A:1006442618860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006442618860

Navigation