Skip to main content
Log in

Plant DNA methyltransferases

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

DNA methylation is an important modification of DNA that plays a role in genome management and in regulating gene expression during development. Methylation is carried out by DNA methyltransferases which catalyse the transfer of a methyl group to bases within the DNA helix. Plants have at least three classes of cytosine methyltransferase which differ in protein structure and function. The METI family, homologues of the mouse Dnmt1 methyltransferase, most likely function as maintenance methyltransferases, but may also play a role in de novo methylation. The chromomethylases, which are unique to plants, may preferentially methylate DNA in heterochromatin; the remaining class, with similarity to Dnmt3 methyltransferases of mammals, are putative de novo methyltransferases. The various classes of methyltransferase may show differential activity on cytosines in different sequence contexts. Chromomethylases may preferentially methylate cytosines in CpNpG sequences while the Arabidopsis METI methyltransferase shows a preference for cytosines in CpG sequences. Additional proteins, for example DDM1, a member of the SNF2/SWI2 family of chromatin remodelling proteins, are also required for methylation of plant DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balganesh, T.S., Reiners, L., Lauster, R., Noyer-Weidner, M., Wilke, K. and Trautner, T.A. 1987. Construction and use of chimeric SPR/f3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J. 6: 3543–3549.

    PubMed  Google Scholar 

  • Bennetzen, J.L. 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.

    PubMed  Google Scholar 

  • Bennetzen, J.L., Brown, W.E. and Springer, P.S. 1988. The state of DNA modification within and flanking maize transposable elements. In: O. Nelson (Ed.) Plant Transposable Elements, Plenum, New York, pp. 237–250.

    Google Scholar 

  • Bernacchia, G., Primo, A., Giorgetti, L., Pitto, L. and Cella, R. 1998. Carrot DNA-methyltransferase is encoded by two classes of genes with differing patterns of expression. Plant J. 13: 317–329.

    PubMed  Google Scholar 

  • Bestor, T.H. 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11: 2611–2617.

    PubMed  Google Scholar 

  • Bestor, T., Laudano, A., Mattaliano, R. and Ingram, V. 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J. Mol. Biol. 203: 971–983.

    PubMed  Google Scholar 

  • Bestor, T.H. and Verdine, G.L. 1994. DNA methyltransferases. Curr. Opin. Cell Biol. 6: 380–389.

    PubMed  Google Scholar 

  • Bird, A.P. 1978. Use of restriction enzymes to study eukaryotic DNA methylation. II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol. 118: 49–60.

    PubMed  Google Scholar 

  • Chen, L., MacMillan, A.M., Chang, W., Ezaz-Nikpay, K. and Lane, W.S. 1991. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 30: 11018–11025.

    PubMed  Google Scholar 

  • Cheng, X., Kumar, S., Posfai, J., Pflugrath, J.W. and Roberts, R.J. 1993. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74: 299–307.

    PubMed  Google Scholar 

  • Chuang, L.S.-H., Ian, H.-I., Koh, T.-W., Ng, H.-H., Xu, G. and Li, B.F.L. 1997. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277: 1996–1999.

    PubMed  Google Scholar 

  • Cubas, P., Vincent, C. and Coen, E. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157–161.

    PubMed  Google Scholar 

  • Finnegan, E.J. and Dennis, E.S. 1993. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucl. Acids Res. 21: 2383–2388.

    PubMed  Google Scholar 

  • Finnegan, E.J., Peacock, W.J. and Dennis, E.S. 1996. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA 93: 8449–8454.

    PubMed  Google Scholar 

  • Finnegan, E.J., Genger, R.K., Peacock, W.J. and Dennis, E.S. 1998. DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 223–247.

    PubMed  Google Scholar 

  • Finnegan, E.J., Peacock, W.J. and Dennis, E.S. In press. DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10: 217-223.

  • Furner, I.J., Sheikh, M.A. and Collett, C.E. 1998. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149: 651–662.

    PubMed  Google Scholar 

  • Gaudet, F., Talbot, D., Leonhardt, H. and Jaenisch, R. 1998. A short DNA methyltransferase isoform restores methylation in vivo. J. Biol. Chem. 273: 32725–32729.

    PubMed  Google Scholar 

  • Genger, R.K., Kovac, K.A., Dennis, E.S., Peacock, W.J. and Finnegan, E.J. 1999. Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol. Biol. 41: 269–278.

    PubMed  Google Scholar 

  • Gruenbaum, Y., Naveh-Many, T., Cedar, H. and Razin, A. 1981. Sequence specificity of methylation in higher plant DNA. Nature 292: 860–862.

    PubMed  Google Scholar 

  • Guseinov, V.A., Kiryanov, G.I. and Vanyushin, B.F. 1975. Intragenome distribution of 5–methylcytosine in DNA of healthy and wilt-infected cotton plants (Gossypium hirsutum L.). Plant Mol. Biol. Rep. 2: 59–63.

    Google Scholar 

  • Henikoff, S. and Comai, L. 1998. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149: 307–318.

    PubMed  Google Scholar 

  • Ingram, R., Charrier, B., Scollan, C. and Meyer, P. 1999. Transgenic tobacco plants expressing the Drosophila Polycomb (Pc) chromodomain show developmental alterations: possible role of Pc chromodomain proteins in chromatin-mediated gene regulation in plants. Plant Cell 11: 1047–1060.

    PubMed  Google Scholar 

  • Ingrosso, D., Fowler, A.V., Bleibaum, J. and Clarke, S. 1989. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. J. Biol. Chem. 264: 20131–20139.

    PubMed  Google Scholar 

  • Jacobsen, S.E. and Meyerowitz, E.M. 1997. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277: 1100–1103.

    PubMed  Google Scholar 

  • Jacobsen, S.E., Sakai, H., Finnegan, E.J., Cao, X. and Meyerowitz, E.M. In press. Ectopic hypermethylation of specific genes in Arabidopsis. Curr. Biol. 10: 179-186.

  • Jeddeloh, J.A., Bender, J. and Richards, E.J. 1998. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev. 12: 1714–1725.

    PubMed  Google Scholar 

  • Jeddeloh, J.A., Stokes, T.L. and Richards, E.J. 1999. Maintenance of genomic methylation requires a SWI2/SNF2–like protein. Nature Genet. 22: 94–97.

    PubMed  Google Scholar 

  • Jeltsch, A. 1999. Circular permutations in the molecular evolution of DNA methyltransferases. J. Mol. Evol. 49: 161–164.

    PubMed  Google Scholar 

  • Kakutani, T., Jeddeloh, J.A., Flowers, S.K., Munakata, K. and Richards, E.J. 1996. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl. Acad. Sci. USA 93: 12406–12411.

    PubMed  Google Scholar 

  • Kakutani, T., Jeddeloh, J.A. and Richards, E.J. 1995. Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucl. Acids Res. 23: 130–137.

    PubMed  Google Scholar 

  • Kakutani, T., Kyoko, M., Richards, E.J. and Hirochika, H. 1999. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics 151: 831–838.

    PubMed  Google Scholar 

  • Karreman, C. and de Waard, A. 1990. Agmenellum quadruplicatum M.AquI, a novel modification methylase. J. Bact. 172: 266–272.

    PubMed  Google Scholar 

  • Klimasauskas, S., Kumar, S., Roberts, R. J. and Cheng, X. 1994. HhaI methyltransferase flips its target base out of the DNA helix. Cell 76: 357–369.

    PubMed  Google Scholar 

  • Klimasauskas, S., Nelson, J.L. and Roberts, R.J. 1991. The sequence specificity domain of cytosine-C5 methylases. Nucl. Acids Res. 19: 6183–6190.

    PubMed  Google Scholar 

  • Lauster, R., Trautner, T.A. and Noyer-Weidner, M. 1989. Cytosinespecific type II DNA methyltransferases: a conserved enzyme core with variable target-recognizing domains. J. Mol. Biol. 206: 305–312.

    PubMed  Google Scholar 

  • Lee, K.-F., Kam, K.-M. and Shaw, P.-C. 1995. A bacterial methyltransferase MEcoHK311 requires two proteins for in vitro methylation. Nucl. Acids Res. 23: 103–108.

    PubMed  Google Scholar 

  • Leonhardt, H., Page, A.W., Weier, H.-U. and Bestor, T.H. 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71: 865–873.

    PubMed  Google Scholar 

  • Li, E., Bestor, T.H. and Jaenisch, R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    PubMed  Google Scholar 

  • Liu, Y., Oakeley, E.J., Sun, L. and Jost, J.P. 1998. Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucl. Acids Res. 26: 1038–1045.

    PubMed  Google Scholar 

  • Malagnac, F., Wendel, B., Goyon, C., Faugeron, G., Zickler, D. et al. 1997. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91: 281–290.

    PubMed  Google Scholar 

  • Mertineit, C., Yoder, J.A., Taketo, T., Laird, D.W., Trasler, J.M. and Bestor, T.H. 1998. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125: 889–897.

    PubMed  Google Scholar 

  • Messer, W. and Noyer-Weidner, M. 1988. Timing and targeting: the biological functions of dam methylation in E. coli. Cell 54: 735–737.

    PubMed  Google Scholar 

  • Mette, M.F., van der Winden, J., Matzke, M.A. and Matzke, A.J.M. 1999. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 18: 241–248.

    PubMed  Google Scholar 

  • Meyer, P., Niedenhof, I. and ten Lohuis, M. 1994. Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. EMBO J. 13: 2084–2088.

    PubMed  Google Scholar 

  • Mittelsten Scheid, O., Afsar, K. and Paszkowski, J. 1998. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 632–637.

    PubMed  Google Scholar 

  • Noyer-Weidner, M. and Trautner, T. A. 1993. Methylation of DNA in prokaryotes. In: J.P. Jost and H.P. Saluz (Eds.) DNA Methylation: Molecular Biology and Biological Significance, Birkhauser Verlag, Basel, pp. 39–108.

    Google Scholar 

  • Okano, M., Xie, S.P. and Li, E. 1998a. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19: 219–220.

    PubMed  Google Scholar 

  • Okano, M., Xie, S.P. and Li, E. 1998b. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucl. Acids Res. 26: 2536–2540.

    PubMed  Google Scholar 

  • Olhoft, P.M. 1998. Cloning and characterization of the 5–methylcytosine methyltransferase gene in maize (Zea mays) plants and tissue cultures. PhD thesis, University of Minnesota, St Paul, MN.

    Google Scholar 

  • Paro, R. and Harte, P.J. 1996. The role of Polycomb group and trithorax group chromatin complexes in the maintenance of determined cell states. In: V.E.A. Russo, R.A. Martienssen and A.D. Riggs (Eds.) Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 507–528.

    Google Scholar 

  • Paro, R. and Hogness, D.S. 1991. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. USA 88: 263–267.

    PubMed  Google Scholar 

  • Pazin, M.J. and Kadonaga, J.T. 1997. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88: 737–740.

    PubMed  Google Scholar 

  • Posfai, J., Bhagwat, A.S., Posfai, G. and Roberts, R.J. 1989. Predictive motifs derived from cytosine methyltransferases. Nucl. Acids Res. 17: 2421–2435.

    PubMed  Google Scholar 

  • Pélissier, T., Thalmeir, S., Kemep, D., Sanger, H.L. and Wassenegger, M. 1999. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucl. Acids Res. 27: 1625–1634.

    PubMed  Google Scholar 

  • Pradhan, S., Cummings, M., Roberts, R.J. and Adams, R.L.P. 1998. Isolation, characterization and baculovirus-mediated expression of the cDNA encoding cytosine DNA methyltransferase from Pisum sativum. Nucl. Acids Res. 26: 1214–1222.

    PubMed  Google Scholar 

  • Reid, R., Greene, P.J. and Santi, D.V. 1999. Exposition of a family of RNA m5C methyltransferases from searching genomic and proteomic sequences. Nucl. Acids Res. 27: 3138–3145.

    PubMed  Google Scholar 

  • Reinisch, K.M., Chen, L., Verdine, G.L. and Lipscomb, W.N. 1995. The crystal structure of HaeIII methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82: 143–153.

    PubMed  Google Scholar 

  • Rohde, A., Grunau, C., De Beck, L., Van Montagu, M., Rosenthal, A. and Boerjan, W. 1999. carpel, a new Arabidopsis epi-mutant of the SUPERMAN gene: phenotypic analysis and DNA methylation status. Plant Cell Physiol. 40: 961–972.

    PubMed  Google Scholar 

  • Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J. and Dellaporta, S.L. 1996. Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273: 654–657.

    PubMed  Google Scholar 

  • Rose, T.M., Schultz, E.R., Henikoff, J.G., Pietrokovski, S., McCallum, C.M. and Henikoff, S. 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucl. Acids Res. 26: 1628–1635.

    PubMed  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.-K., Motchoulskaia, N. and Zakharov, D. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    PubMed  Google Scholar 

  • Slupphaug, G., Mol, C.D., Kavli, B., Arvai, A.S., Krokan, H.E. and Tainer, J.A. 1996. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384: 87–92.

    PubMed  Google Scholar 

  • Thomas, A.J., Sherratt, H.S.A. 1956. The isolation of nucleic acid fractions from plant leaves and their purine and pyrimidine composition. Biochem. J. 62: 1–4.

    PubMed  Google Scholar 

  • Trautner, T.A., Balganesh, T.S. and Pawlek, B. 1988. Chimeric multispecific DNA methyltransferases with novel combinations of target recognition. Nucl. Acids Res. 16: 6649–6658.

    PubMed  Google Scholar 

  • Vongs, A., Kakutani, T., Martienssen, R.A. and Richards, E.J. 1993. Arabidopsis thaliana DNA methylation mutants. Science 26: 1926–1928.

    Google Scholar 

  • Wassenegger, M., Heimes, S., Riedel, L. and Sanger, H.L. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76: 567–576.

    PubMed  Google Scholar 

  • Wassenegger, M. and Pelissier, T. 1998. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37: 349–362.

    PubMed  Google Scholar 

  • Wilke, K., Rauhut, E., Noyer-Weidner, M., Lauster, R., Pawlek, B. et al. 1988. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 7: 2601–2609.

    PubMed  Google Scholar 

  • Wu, J.C. and Santi, D.V. 1987. Kinetic and catalytic mechanism of HhaI methyltransferase. J. Biol. Chem. 262: 4778–4786.

    PubMed  Google Scholar 

  • Wyszynski, M.W., Gabbara, S. and Bhagwat, A.S. 1991. Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nucl. Acids Res. 20: 319–326.

    Google Scholar 

  • Xie, S., Wang, Z., Okano, M., Nogami, M., Li, Y., He, W.-W. and Okumura, K., Li, E. 1999. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236: 87–95.

    PubMed  Google Scholar 

  • Xu, G.-L., Bestor, T.H., Bourc'his, D., Hseih, C.-L., Tommerup, N., Bugge, M., Hulten, M., Qu, X., Russo, J. and Viegas-Péquignot. 1999. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 402: 187–191.

    PubMed  Google Scholar 

  • Xu, S.-Y., Xiao, J.-P., Posfai, J., Maunus, R. and Benner, J. 1997. Cloning of the BssHII restriction-modification system in Escherichia coli: BssHII methyltransferase contains circularly permuted cytosine-5 methyltransferase motifs. Nucl. Acids Res. 25: 3991–3994

    PubMed  Google Scholar 

  • Yoder, J.A. and Bestor, T.H. 1998. A candidate mammalian DNA methyltransferase related to Pmt1p of fission yeast. Hum. Mol. Genet. 7: 279–284.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finnegan, E., Kovac, K. Plant DNA methyltransferases. Plant Mol Biol 43, 189–201 (2000). https://doi.org/10.1023/A:1006427226972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006427226972

Navigation