Skip to main content
Log in

The photosynthesis gene cluster of Rhodobacter sphaeroides

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosynthetic bacteria are at the forefront of the study of many aspects of photosynthesis, including photopigment biosynthesis, photosynthetic-membrane assembly, light-harvesting, and reaction center photochemistry. The facultative growth of some photosynthetic bacteria, their simple photosystems, and their ease of genetic manipulation have all contributed to advances in these areas. Amongst these bacteria, the purple non-sulfur bacterium Rhodobacter sphaeroides has emerged as, arguably, the leading contender for a model system in which to integrate the studies of all the different aspects of the assembly and function of the photosynthetic apparatus. Many of the genes encoding photosynthesis-related proteins are known to be clustered within a small region of the genome in this organism. As a further aid to studying the assembly and function of the photosystem of Rb. sphaeroides, the DNA sequence for a genomic segment containing this photosynthesis gene cluster (PGC) has been assembled from previous EMBL submissions and formerly unpublished data. The Rb. sphaeroides PGC is 40.7 kb in length and consists of 38 open reading frames encoding the reaction center H, L and M subunits, the α and β polypeptides of the light-harvesting I (B875) complex, and the enzymes of bacteriochlorophyll and carotenoid biosynthesis. PGCs are a feature of gene organization in several photosynthetic bacteria, and the similarities between the clusters of Rb. sphaeroides and Rb. capsulatus have been apparent for some time. Here we present the first comprehensive analysis of the PGC of Rb. sphaeroides, as well as a comparison with that of Rb. capsulatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CW, Forrest ME, Cohen SN and Beatty JT (1989) Structural and functional analysis of transcriptional control of the Rhodobacter capsulatus puf operon. J Bacteriol 171: 473–482

    PubMed  Google Scholar 

  • Addlesee HA and Hunter CN (1999) Physical mapping and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides. J Bacteriol 181: 7248–7255

    PubMed  Google Scholar 

  • Addlesee HA, Gibson LCD, Jensen PE and Hunter CN (1996) Cloning, sequencing and functional assignment of the chlorophyll biosynthesis gene, chlP, of Synechocystis sp. PCC 6803. FEBS Lett 389: 126–130

    PubMed  Google Scholar 

  • Addlesee HA, Fiedor L and Hunter CN (2000) DNA sequencing, transposon Tn5 mutagenesis, and complementation analysis of the bchG-ORF427-bchP-ORF177 region of the Rhodobacter sphaeroides photosynthesis gene cluster: Functional assignment of bacteriochlorophyll synthetase. Manuscript in preparation.

  • Alberti M, Burke DH and Hearst JE (1995) Structure and sequence of the photosynthesis gene cluster. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1083–1106. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Albrecht M, Ruther A and Sandmann G (1997) Purification and biochemical analysis of a hydroxyneurosporene desaturase involved in the biosynthetic pathway of the carotenoid spheroidene in Rhodobacter sphaeroides. J Bacteriol 179: 7462–7467

    PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84: 5730–5734

    PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    PubMed  Google Scholar 

  • Ambler JP (1985) Computer-Assisted bacterial taxonomy. In: Jones D, Goodfellow M and Priest FG (eds) Computer-Assisted Bacterial Systematics, pp 307–335. Academic Press, London

    Google Scholar 

  • Armstrong GA, Alberti M, Leach F and Hearst JE (1989) Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216: 254–268

    Article  PubMed  Google Scholar 

  • Armstrong GA, Alberti M and Hearst JE (1990) Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc Natl Acad Sci USA. 87: 9975–9979

    PubMed  Google Scholar 

  • Armstrong GA (1994) Eubacteria show their true colours: genetics of carotenoid pigment biosynthesis from microbes to plants. J Bacteriol 176: 4795–4802

    PubMed  Google Scholar 

  • Arnoux B, Ducruix A, Astier C, Picaud M, Roth M and Reiss-Husson F (1990) Towards the understanding of the function of Rhodobacter sphaeroides Y wild type reaction center: Gene cloning, protein and detergent structures in the three-dimensional crystals. Biochimie 72: 525–530

    PubMed  Google Scholar 

  • Ashby MK, Coomber SA and Hunter CN (1987) Cloning, nucleotide sequence and transfer of genes for the B800–850 light harvesting complex of Rhodobacter sphaeroides. FEBS Lett 213: 245–258

    Google Scholar 

  • Baker ME and Fanestil DD (1991) Mammalian peripheral-type benzodiazepine receptor is homologous to the CrtK protein of Rhodobacter capsulatus, a photosynthetic bacterium. Cell 65: 721–722

    PubMed  Google Scholar 

  • Bauer CE and Marrs BL (1988) Rhodobacter capsulatus puf operon encodes a regulatory protein (pufQ) for bacteriochlorophyll biosynthesis. Proc Natl Acad Sci USA 85: 7047–7078

    Google Scholar 

  • Bauer CE, Young DA and Marrs BL (1988) Analysis of the Rhodobacter capsulatus puf operon. J Biol Chem 263: 4820–4827

    PubMed  Google Scholar 

  • Bauer CE, Buggy JJ, Yang Z and Marrs BL (1991) The superoperonal organization of genes for pigment biosynthesis and reaction center proteins is a conserved feature in Rhodobacter capsulatus: Analysis of overlapping bchB and puhA transcripts. Mol Gen Genet 228: 433–444

    PubMed  Google Scholar 

  • Bauer CE, Bollivar DW and Suzuki JY (1993) Genetic analyses of photopigment biosynthesis in eubacteria - a guiding light for algae and plants. J Bacteriol 175: 3919–3925

    PubMed  Google Scholar 

  • Bollivar DW, Jiang ZY, Bauer CE and Beale SI (1994a) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L137 methionine: Mg-protoporphyrin IX methyltransferase. J Bacteriol 176: 5290–5296

    PubMed  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowoiski JM and Bauer CE (1994b) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622–640

    Article  PubMed  Google Scholar 

  • Bollivar DW, Wang SJ, Allen JP and Bauer CE (1994c) Moleculargenetic analysis of terminal steps in bacteriochlorophyll a biosynthesis-characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Biochem 33: 12763–12768

    PubMed  Google Scholar 

  • Broglie RM, Hunter CN, Delepelaire P, Niederman RA, Chua NH and Clayton RK (1980) Isolation and characterisation of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 77: 87–91

    PubMed  Google Scholar 

  • Burke DH, Alberti M and Hearst JE (1993) bchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in plants and bacteria. J Bacteriol 175: 2414–2422

    PubMed  Google Scholar 

  • Choudhary M, Mackenzie C, Mouncey NJ and Kaplan S (1999) RsGDB, the Rhodobacter sphaeroides genome database (http://utmmg.med.uth.tmc.edu/sphaeroides). Nucl Acids Res 27: 61–62

    PubMed  Google Scholar 

  • Clayton RK (1962) Primary reactions in bacterial photosynthesis. I. The nature of light-induced absorbancy changes in chromatophores; evidence for a special bacteriochlorophyll component. Photochem Photobiol 1: 201–210

    Google Scholar 

  • Clayton RK and Wang RT (1971) Photochemical reaction centers from Rhodopseudomonas sphaeroides. In: San Pietro A (ed) Methods in Enzymology, Vol XXIII, pp 696–704. Academic Press

  • Clayton RK and Clayton BJ (1972) Relations between pigments and proteins in the photosynthetic membranes of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 283: 492–504

    PubMed  Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulphur purple bacteria. J Cell Comp Physiol 49: 25–68

    Google Scholar 

  • Coomber SA and Hunter CN (1989) Construction of a physical map of the 45 kb photosynthetic gene cluster of Rhodobacter sphaeroides. Arch Microbiol 151: 454–458

    Google Scholar 

  • Coomber SA, Chaudri M, Connor A, Britton G and Hunter CN (1990) Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4: 977–989

    PubMed  Google Scholar 

  • DeHoff BS, Lee JK, Donohue TJ, Gumport RI and Kaplan S (1988) In vivo analysis of puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator. J Bacteriol 170: 4681–4692

    PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624

    Google Scholar 

  • Donohue TJ, Hoger JH and Kaplan S (1986) Cloning and expression of the Rhodobacter sphaeroides reaction center H gene. J Bacteriol 168: 953–961

    PubMed  Google Scholar 

  • Dryden SC and Kaplan S (1990) Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res 18: 7267–7277

    PubMed  Google Scholar 

  • Du SY, Bird TH and Bauer CE (1998) DNA binding characteristics of RegA - A constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus. J Biol Chem 273: 18509–18513

    PubMed  Google Scholar 

  • Duysens LMN, Huiskamp WJ, Vos JJ and van der Hart JM. (1952) Reversible changes in bacteriochlorophyll in purple bacteria upon illumination. Biochim Biophys Acta 19: 188–190

    Google Scholar 

  • Elsen S, Ponnampalam SN and Bauer CE (1998) CrtJ bound to distant binding sites interacts cooperatively to aerobically repress photopigment biosynthesis and light harvesting II gene expression in Rhodobacter capsulatus. J Biol Chem 273: 30762–30769

    PubMed  Google Scholar 

  • Farchaus JW, Barz WP, Grünberg H and Oesterhelt D (1992) Studies on the expression of the pufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides. EMBO J 11: 2779–2788

    Google Scholar 

  • Feher G (1971) Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem Photobiol 14: 373–387

    PubMed  Google Scholar 

  • Feher G and Okamura MY (1978) Chemical composition and properties of reaction centres. In Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 349–386. Plenum Press, New York

    Google Scholar 

  • Fonstein M, Nikolskaya T, Kogan Y and Haselkorn R (1998) Genome encyclopedias and their use for comparative analysis of Rhodobacter capsulatus strains. Electrophoresis 19: 469–477

    PubMed  Google Scholar 

  • Garcia-Asua G, Lang HP, Cogdell RJ and Hunter CN (1998) Carotenoid diversity: A modular role for the phytoene desaturase step. TIPS 3: 445–449

    Google Scholar 

  • Gibson LCD, McGlynn P, Chaudri M and Hunter CN (1992) A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding hemF and the puc operon. Mol Microbiol 6: 3171–3186

    PubMed  Google Scholar 

  • Gibson LCD and Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase. FEBS Lett 352: 127–130

    Article  PubMed  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, Von Wettstein D and Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92: 1941–1944

    PubMed  Google Scholar 

  • Gomelsky M and Kaplan S (1995) Genetic-evidence that ppsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol 177: 1634–1637

    PubMed  Google Scholar 

  • Gomelsky M and Kaplan S (1997) Molecular genetic analysis suggesting interaction between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 179: 128–134

    PubMed  Google Scholar 

  • Gong L, Lee JK and Kaplan S (1994) The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly. J Bacteriol 176: 2946–2961

    PubMed  Google Scholar 

  • Gong L and Kaplan S (1996) Translational control of puf operon expression in Rhodobacter sphaeroides 2.4.1. Microbiology 142: 2057–2069

    PubMed  Google Scholar 

  • Hahn FMJ, Baker A, and Poulter CD (1996) Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase. J Bacteriol 178: 619–624

    PubMed  Google Scholar 

  • Hebermehl M and Klug G (1998) Effect of oxygen on translation and posttranscriptional steps in expression of photosynthesis genes in Rhodobacter capsulatus. J Bacteriol 180: 3983–3987

    PubMed  Google Scholar 

  • Hoff AJ and Deisenhofer J (1997) Photophysics of photosynthesis structure and spectroscopy of reaction centers of purple bacteria. Physics Lett 287: 2–247

    Google Scholar 

  • Hunter CN and Coomber SA (1988) Cloning and oxygen-regulated expression of the bacteriochlorophyll biosynthesis genes bch E, B, A and C of Rhodobacter sphaeroides. J Gen Microbiol 134: 1491–1497

    Google Scholar 

  • Hunter CN and Turner G (1988) Transfer of genes coding for apoproteins of reaction centre and light-harvesting LH1 complexes to Rhodobacter sphaeroides. J Gen Microbiol 134: 1471–1480

    Google Scholar 

  • Hunter CN, Van Grondelle R and Olsen JD (1989) Photosynthetic antenna proteins: 100 ps before photochemistry starts. TIBS 158: 72–76

    Google Scholar 

  • Hunter CN, McGlynn P, Ashby MK, Burgess JG and Olsen JD (1991) DNA sequencing and complementation/deletion analysis of the bchA-puf operon region of Rhodobacter sphaeroides: In vivo mapping of the oxygen-regulated puf promoter. Mol Microbiol 5: 2649–2661

    PubMed  Google Scholar 

  • Hunter CN, Hundle BS, Hearst JE, Lang HP, Gardiner AT, Takaichi S and Cogdell RJ (1994) Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. J Bacteriol 176: 3692–3697

    PubMed  Google Scholar 

  • Jones MR, Fowler GJS, Gibson LCD, Grief GG, Olsen JD, Crielaard W and Hunter CN (1992) Mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction centre, LH1 and LH2 genes. Mol Microbiol 6: 1173–1184

    PubMed  Google Scholar 

  • Jones OTG (1978) Biosynthesis of porphyrins, hemes and chlorophylls. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 751–777. Plenum Press, New York

    Google Scholar 

  • Kaneko T and Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38: 1171–1176

    PubMed  Google Scholar 

  • Kiley PJ, Donohue TJ, Havelka WA and Kaplan S (1987) DNA sequence and in vitro expression of the B875 light-harvesting polypeptides of Rhodobacter sphaeroides. J Bacteriol 169: 742–750

    PubMed  Google Scholar 

  • Kiley PJ and Kaplan S (1987) Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides light harvesting B800–850α and B800-850β genes. J Bacteriol 169: 3268–3275

    PubMed  Google Scholar 

  • Kirndorfer M, Jager A and Klug G (1998) Integration host factor affects the oxygen-regulated expression of photosynthesis genes in Rhodobacter capsulatus. Mol Gen Genet 258: 297–305

    PubMed  Google Scholar 

  • Lang H, Cogdell RJ, Gardiner AT and Hunter CN (1994) Early steps in carotenoid biosynthesis: Sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and Rb. sphaeroides. J Bacteriol 176: 3859–3869

    PubMed  Google Scholar 

  • Lang HP, Cogdell RJ, Takaichi S and Hunter CN (1995) Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol 177: 2064–2073

    PubMed  Google Scholar 

  • Lascelles J (1966) The accumulation of bacteriochlorophyll precursors by mutant and wild-type strains of Rhodopseudomonas sphaeroides. Biochemistry 100: 175–183

    Google Scholar 

  • Lascelles J and Hatch TP (1969) Bacteriochlorophyll and heme synthesis in Rhodopseudomonas sphaeroides: Possible role of heme in regulation of the branched biosynthetic pathway. J Bacteriol 98: 712–720

    PubMed  Google Scholar 

  • Lee JK, Dehoff BS, Donohue TJ, Gumport RI and Kaplan S (1989) Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1 and an intercistronic transcription terminator mutant. J Biol Chem 264: 19354–19365

    PubMed  Google Scholar 

  • Lipman DJ and Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227: 1435–1441

    PubMed  Google Scholar 

  • Marrs B (1981) Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol 146: 1003–1012

    PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW(1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  Google Scholar 

  • McGlynn P and Hunter CN (1993) Genetic analysis of the bchC and bchA genes of Rhodobacter sphaeroides. Mol Gen Genet 236: 227–234

    PubMed  Google Scholar 

  • McGlynn P, Hunter CN and Jones MR (1994) The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Lett 349: 349–353

    Article  PubMed  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K and Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172: 6704–6712

    PubMed  Google Scholar 

  • Monger TG and Parson WW (1977) Singlet-triplet fusion in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 460: 393–407

    PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Hirosawa M, Miyajima N and Tabata S (1998) CyanoBase, a WWW database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucleic Acids Res 26: 63–67

    PubMed  Google Scholar 

  • Nickens DG and Bauer CE (1998) Analysis of the puc operon promoter from Rhodobacter capsulatus. J Bacteriol 180: 4270–4277

    PubMed  Google Scholar 

  • Niederman RA, Mallon DE and Langan JJ (1976) Membranes of Rhodopseudomonas sphaeroides IV. Assembly of chromatophores in low aeration cell suspensions. Biochim Biophys Acta 440: 429–447

    PubMed  Google Scholar 

  • Oster U, Bauer CE and Rüdiger W (1997) Characterisation of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272: 9671–9676

    PubMed  Google Scholar 

  • Pemberton JM and Harding CM (1986) Cloning of carotenoid biosynthesis genes from Rhodopseudomonas sphaeroides. Curr Microbiol 14: 25–29

    Google Scholar 

  • Penfold RJ and Pemberton JM (1994) Sequencing, chromosomal inactivation and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J Bacteriol 176: 2869–2876

    PubMed  Google Scholar 

  • Platt T (1986) Transcriptional termination and the regulation of gene expression. Ann Rev Biochem 55: 339–372

    Article  PubMed  Google Scholar 

  • Ponnampalam SN, Buggy JJ and Bauer CE (1995) Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid and light-harvesting II expression in Rhodobacter capsulatus. J Bacteriol 177: 2990–2997

    PubMed  Google Scholar 

  • Ponnampalam SN and Bauer CE (1997) DNA binding characteristics of CrtJ - a redox-responding repressor of bacteriochlorophyll, carotenoid and light-harvesting II gene expression in Rhodobacter capsulatus. J Biol Chem 272: 18391–18396

    PubMed  Google Scholar 

  • Ponnampalam SN, Elsen S and Bauer CE (1988) Aerobic repression of the Rhodobacter capsulatus bchC promoter involves cooperative interactions between CrtJ bound to neighboring palindromes. J Biol Chem 273: 30757–30761

    Google Scholar 

  • Pruitt KD (1998) WebWise: Guide to the Institute for Genomic Research Web site. Genome Res 8: 1000–1004

    PubMed  Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR and Hunter CN (1998) The LH1-RC core complex of Rhodobacter sphaeroides: Interaction between components, time-dependent assembly and topology of the PufX protein. Biochim Biophys Acta 1366: 301–316

    PubMed  Google Scholar 

  • Shimada H, Wada T, Handa H, Ohta H, Mizoguchi H, Nishimura K, Masuda T, Shioi Y and Takamiya K (1996) A transcription factor with a leucine-zipper motif involved in light-dependent inhibition of expression of the puf operon in the photosynthetic bacterium Rhodobacter sphaeroides. Plant Cell Physiol 37: 515–522

    PubMed  Google Scholar 

  • Sistrom WR (1977) Transfer of chromosomal genes mediated by plasmid R68.45 in Rhodopseudomonas sphaeroides. J Bacteriol 131: 526–532

    PubMed  Google Scholar 

  • Sistrom WR and Clayton RK (1963) Studies on a mutant of Rhodopseudomonas sphaeroides unable to grow photosynthetically. Biochim Biophys Acta 88: 61–73

    Google Scholar 

  • Sockett RE, Donohue TJ, Varga AR and Kaplan S (1989) Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences. J Bacteriol 171: 436–446

    PubMed  Google Scholar 

  • Sundström VT, Pullerits T and Van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem 103: 2327–2346

    Google Scholar 

  • Suwanto A and Kaplan S (1989a) Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: Genome size, fragment identification and gene localization. J Bacteriol 171: 5840–5849

    PubMed  Google Scholar 

  • Suwanto A and Kaplan S (1989b) Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: Presence of two unique circular chromosomes. J Bacteriol 171: 5850–5859

    PubMed  Google Scholar 

  • Suzuki JY and Bauer CE (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus: Possible monovinyl substrate discrimination of lightindependent protochlorophyllide reductase. J Biol Chem 270: 3732–3740

    Article  PubMed  Google Scholar 

  • Taylor DP, Cohen SN, Clark WO and Marrs DL (1983) Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation mediated marker rescue technique. J Bacteriol 154: 580–590

    PubMed  Google Scholar 

  • Tichy HV, Albien KU, Gadon N and Drews G (1991) Analysis of the Rhodobacter capsulatus puc operon: The pucC gene plays a central role in the regulation of LH II (B800–850 complex) expression. EMBO J 10: 2949–2955

    PubMed  Google Scholar 

  • Tichy HV, Oberle B, Stiehle H, Schiltz E and Drews G (1989) Genes downstream from pucB and pucA are essential for formation of the B800–850 complex of Rhodobacter capsulatus. J Bacteriol 171: 4914–4922

    PubMed  Google Scholar 

  • Vredenberg WJ and Duysens LNM (1963) Transfer of energy from bacteriochlorophyll to a reaction centre during bacterial photosynthesis. Nature 197: 355–357

    PubMed  Google Scholar 

  • Wellington CL, Taggart AKP and Beatty JT (1991) Functionalsignificance of overlapping transcripts of crtEF, bchCA and puf photosynthesis gene operons in Rhodobacter capsulatus. J Bacteriol 173: 2954–2961

    PubMed  Google Scholar 

  • Wellington CL, Bauer CE and Beatty JT (1992) Photosynthesis gene superoperons in purple nonsulfur bacteria: The tip of the iceberg? Can J Microbiol 38: 20–27

    Google Scholar 

  • Williams JC, Feher G and Simon MI (1983a) Sequencing of the gene encoding the M-subunit of the reaction center of Rhodopseudomonas sphaeroides. Biophys J 41: A122

    Google Scholar 

  • Williams JC, Steiner LA, Ogden RC, Simon MI and Feher g (1983b) Primary structure of the M subunit of the reaction centre from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 80: 6505–6509

    Google Scholar 

  • Williams JC, Steiner G, Feher G and Simon MI (1984) Primary structure of the L subunit of the reaction centre of Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81: 7303–7308.

    PubMed  Google Scholar 

  • Williams JC, Steiner LA and Feher G (1986) Primary structure of the reaction center from Rhodopseudomonas sphaeroides. Proteins: Structure, Function and Genetics 1: 312–325

    Google Scholar 

  • Willows RD and Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus bchI,-D and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273: 34206–34213

    PubMed  Google Scholar 

  • Willows RD, Gibson LCD, Kanangara CG, Hunter CN and Vonwettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438–443

    PubMed  Google Scholar 

  • Woese CR (1987) Bacterial Evolution. Microbiol Rev 51: 221–271

    PubMed  Google Scholar 

  • Woodbury NW and Allen JP (1995) The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria. In Blankenship RE, Madigan MT and Bauer CE (eds) The Anoxygenic Photosynthetic Bacteria, pp 527–557. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Wong WK, Collins WJ, Harmer A, Lilburn TG and Beatty JT (1996) Directed mutagenesis of the Rhodobacter capsulatus puhA gene and orf214: Pleiotropic effects on photosynthetic reaction center and light-harvesting 1 complexes. J Bacteriol 178: 2334–2342

    PubMed  Google Scholar 

  • Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95: 14851–14856

    PubMed  Google Scholar 

  • Yeliseev AA and Kaplan S (1995) A sensory transducer homologous to the mammalian peripheral-type benzodiazepine receptor regulates photosynthetic membrane complex-formation in Rhodobacter sphaeroides 2.4.1. J Biol Chem 270: 21167–21175

    PubMed  Google Scholar 

  • Yeliseev AA, Krueger KE and Kaplan S (1997) A mammalian mitochondrial drug receptor functions as a bacterial ‘oxygen’ sensor. Proc Natl Acad Sci USA 94: 5101–5106

    PubMed  Google Scholar 

  • Yen HC and Marrs BL (1976) Map of the genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol 126: 619–629

    PubMed  Google Scholar 

  • Yildiz FH, Gest H and Bauer CE (1992) Conservation of the photosynthesis gene cluster in Rhodospirillum centenum. Mol Microbiol 6: 2683–2691

    PubMed  Google Scholar 

  • Young DA, Bauer CE, Williams JC and Marrs BL (1989) Geneticevidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet 218: 1–12

    Google Scholar 

  • Young CS and Beatty JT (1998) Topological model of the Rhodobacter capsulatus light-harvesting complex 1 assembly protein LhaA (previously known as ORF1696). J Bacteriol 180: 4742–4745

    PubMed  Google Scholar 

  • Youvan DC, Bylina EJ, Alberti MH, Begusch H and Hearst JE (1984) Nucleotide and deduced sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from Rb. capsulata. Cell 37: 949–957

    Article  PubMed  Google Scholar 

  • Youvan DC and Ismail S (1985) Light-harvesting II (B800-B850 complex) structural genes from Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 82: 58–62

    Google Scholar 

  • Zeilstra-Ryalls J, Gomelsky M, Eraso JM, Yeliseev JO and Kaplan S (1998a) Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 180: 2801–2809

    PubMed  Google Scholar 

  • Zeilstra-Ryalls JH, Gomelsky M, Yeliseev AA, Eraso JM and Kaplan S (1998b) Transcriptional regulation of photosynthesis operons in Rhodobacter sphaeroides 2.4.1. Methods Enzymol 297: 151–166

    PubMed  Google Scholar 

  • Zsebo KM and Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from Rhodobacter capsulatus. Cell 37: 937–947

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naylor, G.W., Addlesee, H.A., Gibson, L.C.D. et al. The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynthesis Research 62, 121–139 (1999). https://doi.org/10.1023/A:1006350405674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006350405674

Navigation