Skip to main content
Log in

Seasonal Variation in Amount and Composition of Monoterpenes Emitted by Young Pinus pinea Trees – Implications for Emission Modeling

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Current inventories of terpenes released from vegetation consider only the short-term influences of light and temperature on emissions to simulate temporal variation during the year. We studied whole canopy emissions from young Pinus pinea during a 15-month enclosure in greenhouse chambers and examined data for other long-term influences. Mean daytime emission rates strongly increased during spring, reached an annual maximum of ≈ 200 pmol m−2 total needle area s−1 (1.1 μg g−1 leaf dry weight h−1) between mid June and mid August, strongly declined in fall and reached an annual minimum of ≈ 1 pmol m−2 s−1 (0.006 μg g−1 h−1) between January and February. Normalization to standard temperature and light conditions did not change the annual time course of emissions, but reduced summer to winter ratio from a factor of 200 to about 45. Seasonal variation was characterized also by changes in terpene composition: among the six main compounds, three (t-β-ocimene, linalool, 1.8-cineol) were exclusively emitted during sunlit hours in the main vegetation period, whereas the other (limonene, α-pinene, myrcene) were emitted day and night and throughout the seasons. The results suggest that different terpene sources in P. pinea foliage exist and that a great part of the annual emission course observed here results from seasonal influences on these sources. A global model to simulate plant emissions is proposed, which accounts for seasonal influences on emissions in addition to the short-term effects of temperature and light. The model is tested on field data and discussed for its general application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O. and Crutzen, P. J., 1997: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science 276, 1052-1058.

    Google Scholar 

  • Atkinson, R., 1990: Gas-phase tropospheric chemistry of organic compounds: A review, Atmos. Environ. 24A, 1-41.

    Google Scholar 

  • Bertin, N. and Staudt, M., 1996: Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees, Oecologia 107, 456-462.

    Google Scholar 

  • Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J-L., and Torres, L., 1997: Diurnal and seasonal course of monoterpene emissions from Quercus ilex under natural conditions–application of light and temperature algorithms, Atmos. Environ. 31 (SI), 135-144.

    Google Scholar 

  • Corchnoy, S. B., Arey, J., and Atkinson, R., 1992: Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, air basin, Atmos. Environ. 26, 339-348.

    Google Scholar 

  • Fall, R. and Wildermuth, M. C., 1998: Isoprene synthase: From biochemical mechanism to emission algorithm, J. Geophys. Res. 103, 25599-25609.

    Google Scholar 

  • Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P., 1992: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cycles 6, 389-430.

    Google Scholar 

  • Fulton, D., Gillespie, T., Fuentes, J., Wang, D., 1998: Volatile organic compound emissions from young black spruce trees, Agric. Forest Meteorol. 90, 247-255.

    Google Scholar 

  • Graedel, T. E., 1979: Terpenoids in the atmosphere, Rev. Geophys. Space Phys. 17, 937-947.

    Google Scholar 

  • Guenther, A. B., 1997: Seasonal and spatial variations in natural volatile organic compound emissions, Ecol. Appl. 7, 34-45.

    Google Scholar 

  • Guenther, A. B., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873-8892.

    Google Scholar 

  • Guenther, A. B., Monson, R. K., and Fall, R., 1991: Isoprene and monoterpene emission rate variability: Observations with Eucalyptus and emission rate algorithm development, J. Geophys. Res. 96, 10799-10808.

    Google Scholar 

  • Guenther, A. B., Zimmerman, P., Harley, P. C., Monson, R. K., and Fall, R., 1993: Isoprene and monoterpene emission variability: Model evaluations and sensivity analysis, J. Geophys. Res. 89, 12609-12617.

    Google Scholar 

  • Hakola, H., Rinne, J., and Laurila, T., 1998: The hydrocarbon emission rates of Tea-Leafed Willow (Salix phylicifolia), Silver Birch (Betula pendula) and European Aspen (Populus tremula), Atmos. Environ. 32 (10), 1825-1833.

    Google Scholar 

  • Harley, P. C., Guenther, A., and Zimmerman, P., 1997: Environmental controls over isoprene emission in deciduous oak canopies, Tree Physiol. 17, 705-714.

    Google Scholar 

  • Hewitt, C. N. and Street, R. A., 1992: A qualitative assessment of the emission of non-metahne hydrocarbon compounds from the biosphere to the atmosphere in the U.K.: Present knowledge and uncertainties, Atmos. Environ. 26, 3069-3077.

    Google Scholar 

  • Janson, R. W., 1993: Monoterpene emissions from Scots pine and Norwegian spruce, J. Geophys. Res. 98, 2839-2850.

    Google Scholar 

  • Kempf, K., Allwine, E., Westberg, H., Claiborn, C., and Lamb, B., 1996: Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods, Atmos. Environ. 30, 1381-1389.

    Google Scholar 

  • Kesselmeier, J., Bode, K., Hofmann, U., Müller, H., Schäfer, L., Wolf, A., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Ferrari, C., Jacob, V., Fugit, J.-L., Dutaur, L., Simon, V., and Torres, L., 1997: Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms, Atmos. Environ. 31 (SI), 119-134.

    Google Scholar 

  • Kesselmeier, J. and Staudt, M., 1998: Biogenic Volatile Organic Compounds (VOCs): An overview on emission, physiology, and ecology of nonmethane hydrocarbons, J. Atmos. Chem. 33, 23-88.

    Google Scholar 

  • Lamb, B., Gay, D., Westberg, H., and Pierce, T., 1993: A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model, Atmos. Environ. 27, 1673-1690.

    Google Scholar 

  • Lerdau, M., Matson, P., Fall, R., and Monson, R., 1995: Ecological controls over monoterpene emissions from Douglas fir (Pseudotsuga menziesii), Ecology 76, 2640-2647.

    Google Scholar 

  • Litvak, M. E., Loreto, F., Harley, P. C., Sharkey, T. D., and Monson, R. K., 1996: The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees, Plant, Cell Environ. 19, 549-559.

    Google Scholar 

  • Marquardt, D. W., 1963: An algorithm for least squares estimation of non linear parameters. J. Soc. Indus. Appl. Math. 11, 431-453.

    Google Scholar 

  • Monson, R. K., Harley, P. C., Litvak, M. E., Wildermuth, M., Guenther, A. B., Zimmerman, P. R., and Fall, R., 1994: Environmental and developmental controls over the seasonal pattern of isoprene emissions from aspen leaves, Oecologia 99, 260-270.

    Google Scholar 

  • Monson, R. K., Lerdau, M. T., Sharkey, T. D., Schimel, D. S., and Fall, R., 1995: Biological aspects of constructing volatile organic compound emission inventories, Atmos. Environ. 29, 2989-3002.

    Google Scholar 

  • Owen, S., Boissard, C., Street, R. A., Duckham, C., Csiky, O., and Hewitt, C. N., 1997: Screening of 18 Mediterranean plant species for volatile organic compound emissions, Atmos. Environ. 31 (SI), 101-118.

    Google Scholar 

  • Pier, P. A. and McDuffie, C., Jr., 1997: Seasonal isoprene emission rates and model comparisons using whole-tree emissions from white oak, J. Geophys. Res. 102, 23963-23971.

    Google Scholar 

  • Pierce, T. E. and Waldruff, P. S., 1991: PC-BEIS: A personal computer version of the biogenic emissions inventory system, J. Air. Wast. Manag. Assoc. 41, 937-941.

    Google Scholar 

  • Pio, C. A., Nunes, T. V., and Brito, S., 1993: Volatile hydrocarbon emissions from common and native species of vegetation in Portugal, in J. Slanina, G. Angeletti, and S. Beilke (eds), General Assessment of Biogenic Emissions and Deposition of Nitrogen Compounds, Sulphur Compounds and Oxidants in Europe, E. Guyot SA, Brussels, CEC Air Pollution Research Report 47, pp. 291-298.

    Google Scholar 

  • Rasmussen, R. A. and Went, F.W., 1965: Volatile organic material of plant origin in the atmosphere, Proc. Natl. Acad. Sci. U.S.A. 53, 215-220.

    Google Scholar 

  • Roussis, V., Petrakis, P. V., Ortiz, A., and Mazomenos, B. E., 1995: Volatile constituents of five Pinus species grown in Greece, Phytochemistry 39, 357-361.

    Google Scholar 

  • Simpson, D., Guenther, A., Hewitt, C. N., and Steinbrecher, R., 1995: Biogenic emissions in Europe. 1. Estimates and uncertainties, J. Geophys. Res. 100, 22875-22890.

    Google Scholar 

  • Schmidt-Vogt, H., 1986: Die Fichte, Vol. II/1: Wachstum, Zuchtung, Boden, Umwelt, Holz, Verlag Paul Parey, Hamburg, Berlin.

    Google Scholar 

  • Schnitzler, J.-P., Lehning, A., and Steinbrecher, R., 1997: Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modeling isoprene emission rates, Bot. Acta 110, 240-243.

    Google Scholar 

  • Schuh, G., Heiden, A. C., Hoffmann, Th., Kahl, J., Rockel, P., Rudolph, J., and Wildt, J., 1997: Emissions of volatile organic compounds from sunflower and beech: Dependence on temperature and light intensity, J. Atmos. Chem. 27, 291-318.

    Google Scholar 

  • Seufert, G., Staudt, M., Kotzias, D., Frenzel, B., 1990: The balance of gas exchange (SO2, O3, CO2, H2O, biogenic hydrocarbons) in continuous stirred tree exposure systems, Poster in: International Conference on Acid Deposition, Glasgow, 16-21 Sept. 1990.

  • Sharkey, T. D. and Loreto F., 1993: Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves, Oecologia 95, 328-333.

    Google Scholar 

  • Staudt, M., 1997: Untersuchungen der Monoterpen-Abgabe an europäischen Nadelbaumarten in Abhängigkeit von Umweltfaktoren, in H. J. Gregor and H. J. Unger (eds), Documenta Naturae 111, Dissertation Universität Hohenheim, Fakultät II, ISSN 0723-8428, Verlag Documenta naturae, München.

  • Staudt, M. and Bertin, N., 1998: Light and temperature dependency of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves, Plant, Cell Environ. 21, 385-395.

    Google Scholar 

  • Staudt, M., Bertin, N., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Frenzel, B., and Fugit, J.-L., 1997: Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.), Atmos. Environ. 31 (SI), 145-156.

    Google Scholar 

  • Staudt, M., Wolf, A., and Kesselmeier, J., 1999: Influence of environmental factors on the exchange of gaseous formic and acetic acid from orange foliage (Citrus sinensis L.), Biogeochemistry, in press.

  • Staudt, M., Frenzel, B., Bertin, N., and Seufert, G., 1995a: Monoterpene emissions from Norway spruce. Seasonal and diurnal patterns from a growth chamber study, Poster of the 20th General Assembly of the European Geophysical Society, Annales Geophysicae II (13), 408.

    Google Scholar 

  • Staudt, M., Seufert, G., Kotzias, D., and Frenzel, B., 1995b: A simple open tube diffusion technique for the production of gaseous monoterpene standards at ppb-level, Fresenius Env. Bull. 4, 743-750.

    Google Scholar 

  • Street, R. A., Duckham, S. C., and Hewitt, C. N., 1996: Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the United Kingdom, J. Geophys. Res. 101, 22799-22806.

    Google Scholar 

  • Street, R. A., Owen, S., Duckham, S. C., Boissard, C., and Hewitt, C. N., 1997: Effect of habitat and age on variations in emissions from Quercus ilex and Pinus pinea, Atmos. Environ. 31 (SI), 89-100.

    Google Scholar 

  • Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F., 1980: Influence of light and temperature on monoterpene emission rates from slash pine (Pinus elliottii), Plant Physiol. 65, 797-801.

    Google Scholar 

  • von Caemmerer, S. and Farquhar, G. D., 1981: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves, Planta 153, 376-387.

    Google Scholar 

  • Westberg, H. H., 1981: Biogenic hydrocarbon measurements, in J. J. Bufalini and R. R. Arnts (eds), Atmospheric Biogenic Hydrocarbons 2, Ann Arbor Science Publishers, Michigan, pp. 25-44.

    Google Scholar 

  • Yatagai, M., Ohira, M., Ohira, T., and Nagai, S., 1995: Seasonal variation of terpene emissions from trees and influence of temperature, light and contact stimulation on terpene emission, Chemosphere 30, 1137-1149.

    Google Scholar 

  • Yokouchi, Y., Hijikata, A., and Ambe, Y., 1984: Seasonal variation of monoterpene emission rate in a pine forest, Chemosphere 13, 255-259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staudt, M., Bertin, N., Frenzel, B. et al. Seasonal Variation in Amount and Composition of Monoterpenes Emitted by Young Pinus pinea Trees – Implications for Emission Modeling. Journal of Atmospheric Chemistry 35, 77–99 (2000). https://doi.org/10.1023/A:1006233010748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006233010748

Navigation