Skip to main content
Log in

Specific interaction of the tomato bZIP transcription factor VSF-1 with a non-palindromic DNA sequence that controls vascular gene expression

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The grp1.8 gene of French bean (Phaseolus vulgaris) is specifically expressed in vascular tissue and encodes a glycine-rich structural protein (GRP1.8) of the cell wall. Earlier promoter analysis had shown that a 28 bp fragment of the grp1.8 promoter (vs-1) confers vascular expression to heterologous minimal promoters and is bound by the tomato bZIP transcription factor VSF-1. Here, we analysed the interaction of VSF-1 with fragments of the vs-1 element and studied the molecular basis of specific binding both in the DNA sequence of the promoter element as well as in the protein. The minimal binding site of VSF-1 is a 9 bp, non-palindromic sequence with two non-identical half-sites and a central nucleotide which separates them. The amino acid sequence of the VSF-1 DNA-binding basic domain has a Lys at position -10 instead of a conserved Arg found in the other bZIP factors isolated so far. This lysine was found to be required for specific recognition of the non-palindromic binding site: a mutant VSF-1 with a Lys-to-Arg substitution at position -10 bound with higher affinity to a palindromic sequence than the wild-type protein. The minimal binding site of VSF-1 was sufficient and necessary to confer vascular-specific expression to a heterologous promoter in vivo. The vsf-1 promoter also showed vascular-specific expression in transgenic tobacco. The close similarity of these expression patterns suggests that VSF-1 is specifically involved in vascular expression of the grp1.8 gene in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeschbacher RA, Schrott M, Potrykus I, Saul MW: Isolation and molecular characterization of PosF21, an Arabidopsis thaliana gene which shows characteristics of a bZIP class transcription factor. Plant J 1: 303–316 (1991).

    PubMed  Google Scholar 

  2. Angel P, Allegretto RA, Okino ST, Hattori K, Boyle WJ, Hunter T, Karin M: Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 332: 166–177 (1988).

    PubMed  Google Scholar 

  3. Armstrong GA, Weisshaar B, Hahlbrock K: Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell 4: 525–537 (1992).

    Article  PubMed  Google Scholar 

  4. Becker D, Kemper E, Schell J, Masterson R: New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20: 1195–1197 (1992).

    PubMed  Google Scholar 

  5. Bowman S, Tischfeld JA, Stambrook PJ: An efficient and simplified method for producing site-directed mutations by PCR. Technique 5: 254–260 (1990).

    Google Scholar 

  6. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 2: 248–254 (1976).

    Google Scholar 

  7. Brunelle AM, Chua N-H: Transcription regulatory proteins in higher plants. Curr Opin Gen Devel 3: 254–258 (1993).

    Google Scholar 

  8. Busch SJ, Sassone-Corsi P: Dimers, leucine zippers and DNAbinding domains. Trends Genet 2: 36–40 (1990).

    Google Scholar 

  9. dePater S, Katagiri F, Kijne J, Chua N-H: bZIP proteins bind to a palindromic sequence without an ACGT core located in a seed-specific element of the pea lectin promoter. Plant J 6: 133–140 (1994).

    Article  PubMed  Google Scholar 

  10. Dröge-Laser W, Kaiser A, Lindsay WP, Halkier BA, Loake GJ, Doerner P, Dixon RA, Lamb C: Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J 16: 726–738 (1997).

    PubMed  Google Scholar 

  11. Dynan WS: Modularity in promoters and enhancers. Cell 58: 1–4 (1989).

    Article  PubMed  Google Scholar 

  12. Ellenberger TE, Brandl CJ, Struhl K, Harrison SC: The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted a helices: crystal structure of the protein-DNA complex. Cell 71: 1223–1237 (1992).

    PubMed  Google Scholar 

  13. Foster R, Izawa T, Chua N-H: Plant bZIP proteins gather at ACGT elements. FASEB J 8: 192–200 (1994).

    PubMed  Google Scholar 

  14. Guiltinan MJ, Miller L: Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol 26: 1041–1053 (1994).

    PubMed  Google Scholar 

  15. Hai T, Curran T: Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88: 3720–3724 (1991).

    PubMed  Google Scholar 

  16. Hai T, Liu F, Coukos FJ, Green MR: Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Devel 3: 2083–2090 (1989).

    PubMed  Google Scholar 

  17. Harrison SC: A structural taxonomy of DNA-binding domains. Nature 353: 715–719 (1991).

    PubMed  Google Scholar 

  18. Hauffe KD, Lee SP, Subramaniam R, Douglas CJ: Combinatorial interactions between positive and negative cis-acting elements control spatial patterns of 4CL-1 expression in transgenic tobacco. Plant J 4: 235–253 (1993).

    Article  PubMed  Google Scholar 

  19. Hope IA, Struhl K: Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885–894 (1986).

    Article  PubMed  Google Scholar 

  20. Izawa T, Foster R, Chua N-H: Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131–1144 (1993).

    Article  PubMed  Google Scholar 

  21. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  22. Jensen EO, Marcker KA, Schell J, deBruijn FJ: Interaction of a nodule specific, trans-acting factor with distinct DNA elements in the soybean leghaemoglobin Lbc3 5′ upstream region. EMBO J 7: 1265–1271 (1988).

    Google Scholar 

  23. Jones Jr JB: Hydroponics: its history and use in plant nutrition studies. J Plant Nutr 6: 1003–1030 (1982).

    Google Scholar 

  24. Jones N: Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61: 9–11 (1990).

    Article  PubMed  Google Scholar 

  25. Keller B, Baumgartner C: Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated. Plant Cell 3: 1051–1061 (1991).

    Article  PubMed  Google Scholar 

  26. Keller B, Heierli D: Vascular expression of the grp 1.8 promoter is controlled by three specific regulatory elements and one unspecific activation sequence. Plant Mol Biol 26: 747–756 (1994).

    PubMed  Google Scholar 

  27. Keller B, Sauer N, Lamb CJ: Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J 12: 3625–3633 (1988).

    Google Scholar 

  28. Keller B, Templeton MD, Lamb CJ: Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular tissue. Proc Natl Acad Sci USA 86: 1529–1533 (1989).

    Google Scholar 

  29. Keller B, Schmid J, Lamb CJ: Vascular expression of a bean cell wall glycine-rich protein-β-glucuronidase gene fusion in transgenic tobacco. EMBO J 5: 1309–1314 (1989).

    Google Scholar 

  30. König P, Richmond TJ: The X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol 233: 139–154 (1993).

    Article  PubMed  Google Scholar 

  31. Kerppola T, Curran T: Zen and the art of Fos and Jun. Nature 373: 199–200 (1995).

    PubMed  Google Scholar 

  32. Landschulz WH, Johnson PF, McKnight SL: The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764 (1988).

    PubMed  Google Scholar 

  33. Leyva A, Liang X, Pintor-Toro JA, Dixon RA, Lamb CJ: Cis-element combinations determine phenylalanine ammonialyase gene tissue-specific expression pattern. Plant Cell 4: 263–271 (1992).

    Article  PubMed  Google Scholar 

  34. Lim K, Ho JX, Keeling K, Gilliland GL, Ji X, Ruker F, Carter DC: Three-dimensional structure of Schistosoma japonicum glutathione S-tranferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV. Protein Sci 12: 2233–2244 (1994).

    Google Scholar 

  35. Lu G, Paul A-L, McCarty DR, Ferl RJ: Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell 8: 847–857 (1996).

    PubMed  Google Scholar 

  36. Rauscher III FJ, Sambucetti LC, Curran T, Distel RJ, Spiegelman BM: Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell 52: 471–480 (1988).

    PubMed  Google Scholar 

  37. Ryser U, Keller B: Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxylem cells. Plant Cell 4: 773–783 (1992).

    Article  PubMed  Google Scholar 

  38. Ryser U, Schorderet M, Zhao G-F, Studer D, Ruel K, Hauf G, Keller B: Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein. Plant J 12: 97–111 (1997).

    PubMed  Google Scholar 

  39. Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR: Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J 4: 1261–1273 (1992).

    Google Scholar 

  40. Suckow M, von Wilcken-Bergmann B, Müller-Hill B: The DNA binding specificity of the basic region of the yeast transcriptional activator GCN4 can be changed by substitution of a single amino acid. Nucl Acids Res 21: 2081–2086 (1993).

    PubMed  Google Scholar 

  41. Suckow M, Schwamborn K, Kisters-Woike B, von Wilcken-Bergmann B, Müller-Hill B: Replacement of invariant bZIP residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity. Nucl Acids Res 21: 4395–4404 (1994a).

    Google Scholar 

  42. Suckow M, Madan A, Kisters-Woike B, von Wilcken-Bergmann B, Müller-Hill B: Creating new DNA binding specificities in the yeast transcriptional activator GCN4 by combining selected amino acid substitutions. Nucl Acids Res 22: 2198–2208 (1994b).

    PubMed  Google Scholar 

  43. Torres-Schumann S, Ringli C, Heierli D, Amrhein N, Keller B: In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression. Plant J 9: 283–296 (1996).

    PubMed  Google Scholar 

  44. Ulmasov T, Liu Z-B, Hagen G, Guilfoyle TJ: Composite structure of auxin response elements. Plant Cell 7: 1611–1623 (1995).

    Article  PubMed  Google Scholar 

  45. Vinson CR, Sigler PB, McKnight SL: Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246: 911–946 (1989).

    PubMed  Google Scholar 

  46. Wang X, Sato R, Brown MS, Xianxin H, Goldstein JL: SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77: 53–62 (1994).

    PubMed  Google Scholar 

  47. Williams ME, Foster R, Chua N-H: Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4: 485–496 (1992).

    Article  PubMed  Google Scholar 

  48. Yin Y, Zhu Q, Dai S, Lamb C, Beachy RN: RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16: 5247–5259 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringli, C., Keller, B. Specific interaction of the tomato bZIP transcription factor VSF-1 with a non-palindromic DNA sequence that controls vascular gene expression. Plant Mol Biol 37, 977–988 (1998). https://doi.org/10.1023/A:1006030007333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006030007333

Navigation