Skip to main content
Log in

The role of DNA repair capacity in susceptibility to lung cancer: A review

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Human cancer risk assessment has relied largely on animal experiments and use of short-term biological tests based on chemical-DNA interaction. The recent introduction of biomarkers to molecular epidemiologic studies has provided another means of assessing risk for tobacco-related cancer. Several biomarkers for genetic susceptibility to lung cancer have been developed and validated in pilot studies that have demonstrated their association with increased risk of lung cancer. For instance, metabolic enzymes responsible for bioactivation and detoxification of environmental chemicals, carcinogen-induced DNA adducts and chromosomal aberrations, and host DNA repair capacity have been measured in human peripheral lymphocytes. These markers allow estimation of interindividual variation in response to carcinogen exposure and thus assessment of cancer risk. Therefore, epidemiological studies of exposure and of molecular etiology of human carcinogenesis provide a new avenue of cancer risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ames BN, Durston W, Yamasaki E, Lee F: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70: 2281–2285, 1973

    Google Scholar 

  2. Schmid W: The micronucleus test for cytogenetic analysis. In: Hollaender A (ed) Chemical Mutagens, Vol. 4. Plenum Press, New York, 1976, pp. 31–53

    Google Scholar 

  3. Abe S, Sasaki M: Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells exposed to various chemicals. J Natl Cancer Inst 58: 1635–1641, 1977

    PubMed  Google Scholar 

  4. McCann J, Choi E, Yamasaki E, Ames BN: Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc Natl Acad Sci USA 72: 5135–5139, 1975

    PubMed  Google Scholar 

  5. Henderson BE, Ross RK, Pike MC: Toward the primary prevention of cancer. Science 254: 1131–1138, 1991

    PubMed  Google Scholar 

  6. Bishop JM: Molecular themes in oncogenesis. Cell 64: 235–248, 1991

    PubMed  Google Scholar 

  7. Levine AJ: The tumor suppressor genes. Ann Rev Biochem 62: 623–651, 1993

    PubMed  Google Scholar 

  8. Sherr CJ: Cancer cell cycles. Science 274: 1672–1677, 1996

    PubMed  Google Scholar 

  9. Hartwell LH, Weinert TA: Checkpoints: Controls that assure the order of cell cycle events. Science 246: 629–633, 1989

    PubMed  Google Scholar 

  10. Farber E: The multistep nature of cancer. Cancer Res 44: 4217–4223, 1984

    PubMed  Google Scholar 

  11. Fearon ER, Vogelstein BA: A genetic model for colorectal tumorigenesis. Cell 61: 759–767, 1990

    PubMed  Google Scholar 

  12. Correa P: Human gastric carcinogenesis: A multistep and multifactorial process. First American Cancer Society award lecture on cancer epidemiology and prevention. Cancer Res 52: 6735–6740, 1992

    PubMed  Google Scholar 

  13. Sancer A: DNA repair in humans. Ann Rev Genetics 29: 69–105, 1995

    Google Scholar 

  14. Hoeijmakers JHJ: Human nucleotide excision repair syndromes: Molecular clues to unexpected intricacies. Eur J Cancer 30: 1912–1921, 1994

    Google Scholar 

  15. Modrich P: Mismatch repair, genetic stability, and cancer. Science 266: 1959–1960, 1994

    PubMed  Google Scholar 

  16. Alcalay J, Freedman SE, Goldberg LH, Wolf JE: Excision repair of pyrimidine dimers induced by simulated solar radiation in the skin of patients with basal cell carcinoma. J Invest Dermatol 95: 506–509, 1990

    PubMed  Google Scholar 

  17. Wei Q, Matanoski GM, Farmer ER, Hedayati M, Grossman L: DNA repair and aging in basal cell carcinoma: A molecular epidemiologic study. Proc Natl Acad Sci USA 90: 1614–1618, 1993

    PubMed  Google Scholar 

  18. Hall J, English DR, Artuso M, Armstrong BK, Winter M: DNA Repair capacity as a risk factor for non-melanocytic skin cancer-a molecular epidemiological study. Int J Cancer 58: 179–184, 1994

    PubMed  Google Scholar 

  19. Shopland DR, Eyre HJ, Pechacek TF: Smoking-attributable cancer mortality in 1991: Is lung cancer now the leading cause of death among smokers in the United States? J Natl Cancer Inst 83: 1142–1148, 1991

    PubMed  Google Scholar 

  20. Tokuhata GK, Lilienfeld AM: Familial aggregation of lung cancer in humans. J Natl Cancer Inst 30: 289–312, 1963

    PubMed  Google Scholar 

  21. Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H: Increased familial risk for lung cancer. J Natl Cancer Inst 76: 217–222, 1986

    PubMed  Google Scholar 

  22. Sellers TA, Elston RC, Rothschild H: Familial risk of cancer among randomly selected cancer probands. Genet Epidemiol 5: 381–392, 1988

    PubMed  Google Scholar 

  23. Sellers TA, Bailey-Wilson JE, Elston RC, Wilson AF, Elston GZ, Ooi WL, Rothschild H: Evidence for Mendelian inheritance in the pathogenesis of lung cancer. J Natl Cancer Inst 82: 1272–1279, 1990

    PubMed  Google Scholar 

  24. Carmelli D, Swan GE, Robinerre D, Fabsitz R: Genetic in fluence on smoking-a study of male twins. N Engl J Med 327: 829–833, 1992

    Google Scholar 

  25. 25. Sellers TA, Potter JD, Bailey-Wilson JE, Rich SS, Rothschild H, Elsta RC: Lung cancer detection and prevention: Evidence for an interaction between smoking and genetic predisposition. Cancer Res 52: 2696–2697, 1992

    Google Scholar 

  26. Petersen DD, McKinney CE, Ikeya K, Smith HH, Bale AE, McBride OW, Nebert DW: Human CYP1A1gene: Cosegregation of the enzyme inducibility phenotype and an RFLP. Am J Hum Genet 48: 720–725, 1991

    PubMed  Google Scholar 

  27. Jaiswal AK, Gonzalez FJ, Nebert DW: Human P1-450 gene sequence and correlation of mRNA with genetic differences in benzo(a)pyrene metabolism. Nucleic Acids Res 13: 4503–4520, 1985

    PubMed  Google Scholar 

  28. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J: Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 263: 131–133, 1990

    PubMed  Google Scholar 

  29. Hayashi S, Watanabe J, Nakachi K, Kawajiri K: Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem 110: 407–411, 1991

    PubMed  Google Scholar 

  30. Cosma G, Crofts F, Taioli E, Toniolo P, Garte S: Relationship between genotype and function of the human CYP1A1 gene. J Toxicol Environ Health 40: 309–316, 1993

    PubMed  Google Scholar 

  31. Crofts F, Cosma GN, Currie D, Taiolo E, Toniolo P, Garte SJ: A novel CYP11 gene polymorphism in African-Americans. Carcinogenesis 14: 1729–1731, 1993

    PubMed  Google Scholar 

  32. Paigen B, Ward E, Steenland K, Houten L, Gurtoo HL, Minowafa J: Arylhydrocarbon hydroxylase in cultured lymphocytes of twins. Am J Hum Genet 30: 561–571, 1978

    PubMed  Google Scholar 

  33. Bartsch H, Petruzzelli S, De Flora S, Hietanen E, Camus AM, Castegnaro M, Alexandrov K, Rojas M, Saracci R, Giuntini C: Carcinogen metabolism in human lung tissues and the effect of tobacco smoking: Results from a case-control multicenter study on lung cancer patients. Environ Health Perspect 98: 119–124, 1992

    PubMed  Google Scholar 

  34. Bartsch H, Hietanen E, Petruzzelli S, Giuntini C, Saracci R, Mussi A, Angeletti CA: Possible prognostic value of pulmonary AH-locus-linked enzymes in patients with tobaccorelated lung cancer. Int J Cancer 46: 185–188, 1990

    PubMed  Google Scholar 

  35. Crespi CL, Penman BW, Gelboin HV, Gonzalez FJ: A tobacco smoke-derived nitrosamine, 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6. Carcinogenesis 12: 1197–1201, 1991

    PubMed  Google Scholar 

  36. Kellerman G, Luyten-Kellerman M, Shaw CR: Genetic variation of arylhydrocarbon hydroxylase in human lymphocytes. Am J Hum Genet 25: 327–331, 1973

    PubMed  Google Scholar 

  37. Kouri RE, McKinney CE, Slomiany DJ, Snodgrass DR, Wray NP, McLemore TL: Positive correlation between high aryl hydrocarbon hydroxylase activity in primary lung cancer as analyzed in cryopreserved lymphocytes. Cancer Res 42: 5030–5037, 1982

    PubMed  Google Scholar 

  38. Kelsey K, Wiencke JK, Spitz MR: A race-specific genetic polymorphism in the CYP1A1 gene is not associated with lung cancer in African Americans. Carcinogenesis 15: 1121–1124, 1994

    PubMed  Google Scholar 

  39. London SJ, Daly AK, Fairbrother KS, Holmes C, Carpenter CL, Navidi WC, Idle JR: Lung cancer risk in African Americans in relation to a race-specific CYP1A1 polymorphism. Cancer Res 55: 6035–6037, 1995

    PubMed  Google Scholar 

  40. Shields PG, Caporaso NE, Falk RT, Sugimura H, Trivers GE, Trump BF, Hoover RN, Weston A, Harris CC: Lung cancer, race, and CYP1A1 genetic polymorphism. Cancer Epidemiol Biomarkers Prev 2: 481–485, 1993

    PubMed  Google Scholar 

  41. Hirvonen A, Husgafvel Pursiainen K, Anttila S, Karjalainen A, Sorsa M, Vainio H: Metabolic cytochrome P450 genotypes and assessment of individual susceptibility to lung cancer. Pharmacogenetics 2: 259–263, 1992

    PubMed  Google Scholar 

  42. Xu X, Kelsey KT, Wiencke JK, Wain JC, Christiani DC: Cytochrome P450 1A1Msp1polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 5: 687–692, 1996

    PubMed  Google Scholar 

  43. Nakachi K, Imai K, Hayashi S, Kawajiri K: Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res 53: 2994–2999, 1993

    PubMed  Google Scholar 

  44. Amos CI, Caporaso NE, Weston A: Host factors in lung cancer risk: A review of interdisciplinary studies. Cancer Epidemiol Biomarkers Prev 1: 505–513, 1992

    PubMed  Google Scholar 

  45. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Pelkonen O, Vainio H: PCR-Based CYP2D6 genotyping for Finnish lung cancer patients. Pharmacogenetics 3: 19–27, 1993

    PubMed  Google Scholar 

  46. Caporaso NE, Shields PG, Landi MT, Shaw GL, Tucker MA, Hoover R, Sugimura H, Weston A, Harris CC: The debrisoquine metabolic phenotype and DNA-based assays: Implications of misclassification for the association of lung cancer and the debrisoquine metabolic phenotype. Environ Health Perspect 98: 101–105, 1992

    PubMed  Google Scholar 

  47. Law MR, Hetzel MR, Idle JR: Debrisoquine metabolism and genetic predisposition to lung cancer. Br J Cancer 59: 686–687, 1989

    PubMed  Google Scholar 

  48. Tiano HF, Wang RL, Hosokawa M, Crespi C, Tindall KR, Langenbach R: Human CYP2A6 activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): Mutational specificity in the gpt gene of AS52 cells. Carcinogenesis 15: 2859–2866, 1994

    PubMed  Google Scholar 

  49. Stephens EA, Taylor JA, Kaplan N, Yang CH, Hsieh LL, Lucier GW, Bell DA: Ethnic variation in the CYP2E1 gene: Polymorphism analysis of 695 African-Americans, European-Americans and Taiwanese. Pharmacogenetics 4: 185–195, 1994

    PubMed  Google Scholar 

  50. Uematsu F, Ikawa S, Kikuchi H, Sagami I, Kanamaru R, Abe T, Satoh K, Motomiya M, Watanabe M: Restriction fragment length polymorphism of the human CYP2E1 (cytochrome P450IIE1) gene and susceptibility to lung cancer: Possible relevance to low smoking exposure. Pharmacogenetics 4: 58–63, 1994

    PubMed  Google Scholar 

  51. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Vainio H: The human CYP2E1 gene and lung cancer: DraI and RsaI restriction fragment length polymorphisms in a Finnish study population. Carcinogenesis 14: 85–88, 1993

    PubMed  Google Scholar 

  52. Watanabe J, Yang JP, Eguchi H, Hayashi S, Imai K, Nakachi K, Kawajiri K: An Rsa I polymorphism in the CYP2E1gene does not affect lung cancer risk in a Japanese population. Jpn J Cancer Res 86: 245–248, 1995

    PubMed  Google Scholar 

  53. Sugimura H, Hamada GS, Suzuki I, Iwase T, Kiyokawa E, Kino I, Tsugane S: CYP1A1 And CYP2E1 polymorphism and lung cancer, case-control study in Rio de Janeiro, Brazil. Pharmacogenetics 5: S145–148, 1995

    PubMed  Google Scholar 

  54. Persson I, Johansson I, Bergling H, Dahl ML, Seidegard J, Rylander R, Rannug A, Hogberg J, Sundberg MI: Genetic polymorphism of cytochrome P4502E1 in a Swedish population. Relationship to incidence of lung cancer. FEBS Lett 319: 207–211, 1993

    PubMed  Google Scholar 

  55. Brockmoller J, Gross D, Kerb R, Drakoulis N, Roots I: Correlation between trans-stilbene oxide-glutathione conjugation activity and the deletion mutation in the glutathione S-transferase class mu gene detected by polymerase chain reaction. Biochem Pharmacol 43: 647–650, 1992

    PubMed  Google Scholar 

  56. Ketterer B, Harris JM, Talaska G, Meyer DJ, Pemble SE, Taylor JB, Lang NP, Kadlubar FF: The human glutathione S-transferase supergene family, its polymorphism, and its effects on susceptibility to lung cancer. Environ Health Perspect 98: 87–94, 1992

    PubMed  Google Scholar 

  57. Seidegard J, Pero RW, Markowitz MM, Roush G, Miller DG, Beattie EJ: Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the susceptibility to lung cancer: a follow-up study. Carcinogenesis 11: 33–36, 1990

    PubMed  Google Scholar 

  58. Zhong S, Howie AF, Ketterer B, Taylor J, Hayes JD, Beckett GJ, Wathen CG, Wolf CR, Spurr NK: Glutathione S-transferase mu locus: Use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 12: 1533–1537, 1991

    PubMed  Google Scholar 

  59. Kihara M, Noda K, Okamoto N: Increased risk of lung cancer in Japanese smokers with class mu glutathione S-transferase gene deficiency. Cancer Lett 71: 151–155, 1993

    PubMed  Google Scholar 

  60. Nazar-Stewart V, Motulsky AG, Eaton DL, White E, Hornung SK, Leng ZT, Stapleton P, Weiss NS: The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res 53: 2313–2318, 1993

    PubMed  Google Scholar 

  61. Heckbert SR, Weiss NS, Hornung SK, Eaton DL, Motulsky AG: Glutathione S-transferase and epoxide hydrolase activity in human leukocytes in relation to risk of lung cancer and other smoking-related cancers. J Natl Cancer Inst 84: 414–422, 1992

    PubMed  Google Scholar 

  62. Brockmoller J, Kerb R, Drakoulis N, Nitz M, Roots I: Genotype and phenotype of glutathione S-transferase class mu isoenzymes mu and psi in lung cancer patients and controls. Cancer Res 53: 1004–1011, 1993

    PubMed  Google Scholar 

  63. Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer B: Theta, a new class of glutathione transferases purified from rat and man. Biochem J 274: 409–414, 1991

    PubMed  Google Scholar 

  64. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB: Human glutathione Stransferase theta (GSTT1): cDNA Cloning and the characterization of a genetic polymorphism. Biochem J 300: 271–276, 1994

    PubMed  Google Scholar 

  65. Trizna Z, Clayman GL, Spitz MR, Briggs KL, Goepfert H: Glutathione S-transferase genotypes as risk factors for head and neck cancer. Am J Surg 170: 499–501, 1995

    PubMed  Google Scholar 

  66. Blum M, Demierre A, Grant DM, Heim M, Meyer UA: Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc Natl Acad Sci USA 88: 5237–5241, 1991

    PubMed  Google Scholar 

  67. Martinez C, Agundez JA, Olivera M, Martin R, Ladero JM, Benitez J: Lung cancer and mutations at the polymorphic NAT2 gene locus. Pharmacogenetics 5: 207–214, 1995

    PubMed  Google Scholar 

  68. Vineis P, Landi MT, Caporaso N: Metabolic polymorphisms and the cancer risk: The evaluation of epidemiological studies. Med Lav 83: 557–575, 1992

    PubMed  Google Scholar 

  69. Petruzzelli S, Franchi M, Gronchi L, Janni A, Oesch F, Pacifici GM, Giuntini C: Cigarette smoke inhibits cytosolic but not microsomal epoxide hydrolase of human lung. Hum Exp Toxicol 11: 99–103, 1992

    PubMed  Google Scholar 

  70. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ: The human microsomal epoxide hydrolase gene (EPHX1): Complete nucleotide sequence and structural characterization. Hum Mol Genet 3: 421–428, 1994

    PubMed  Google Scholar 

  71. Hagmar L, Brogger A, Hansteen IL, Heim S, Hogstedt B, Knudsen L, Lambert B, Linnainmaa K, Mitelman F, Nordenson I, Reuterwall C, Salomaa S, Skerfving S, Sorsa M: Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage. Cancer Res 54: 2919–2922, 1994

    PubMed  Google Scholar 

  72. Hsu TC, Johnston DA, Cherry LM, Ramkissoon D, Schantz SP, Jessup JM, Winn RJ, Shirley L, Furlong C: Sensitivity to genotoxic events of bleomycin in humans: Possible relationship to environmental carcinogens. Int J Cancer 43: 403–409, 1989

    PubMed  Google Scholar 

  73. Spitz MR, Hsu TC, Wu X, Fueger JJ, Amos CI, Roth JA: Mutagen sensitivity as a biologic marker of lung cancer risk in African Americans. Cancer Epidemiol Biomarkers Prev 4: 99–103, 1995

    PubMed  Google Scholar 

  74. Wei Q, Gu J, Cheng L, Bondy ML, Spitz MR, Hsu TC: Benzo[a]pyrene diol epoxide induced chromosomal aberrations in normal human lymphocytes. Cancer Res 56: 3975–3979, 1996

    PubMed  Google Scholar 

  75. Wei Q, Spitz MR, Gu J, Cheng L, Xu X, Strom SS, Kripke ML, Hsu TC: DNA repair capacity correlates with mutagen sensitivity in lymphoblastoid cell lines. Cancer Epidemiol Biomarkers Prev 5: 199–204, 1996

    PubMed  Google Scholar 

  76. Protic-Sabljic M, Kraemer KH: One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pig mentosum cells. Proc Natl Acad Sci USA 82: 6622–6626, 1985

    PubMed  Google Scholar 

  77. Cleaver JE, Kraemer K: Xeroderma pigmentosum. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Diseases II. McGraw-Hill Inc., New York, 1989, pp. 2949–2971

    Google Scholar 

  78. Friedberg EC: DNA Repair. WH Freeman and Company, New York, 1985

    Google Scholar 

  79. Phillips DH: Fifty years of B[a]P. Nature 303: 468–472, 1983

    PubMed  Google Scholar 

  80. Gelboin HV: Benzo[a]pyrene metabolism, activation, and carcinogenesis: Role and regulation of mixed function oxidases and related enzymes. Physiol Rev 60: 1107–1166, 1980

    PubMed  Google Scholar 

  81. MacLeod MC, Tang MS: Interaction of benzo[a]pyrenediol-epoxides with linear and supercoiled DNA. Cancer Res 45: 51–56, 1985

    PubMed  Google Scholar 

  82. Jernstrom B, Graslund A: Covalent binding of benzo[a]-pyrene-7,8-dihydrodiol-9,10-epoxide to DNA: Molecular structure, induced mutations and biological consequences. Biophys Chem 49: 185–199, 1994

    PubMed  Google Scholar 

  83. Cosman M, de los Santos C, Fiala R, Hingerty BE, Sigh SB, Ibanez V, Margulis LA, Live D, Geacintov NE, Broyde S, Petel DJ: Solution conformation of the major adducts between the carcinogen (+)-anti-benzo[a]pyrene diol epoxide and DNA. Proc Natl Acad Sci USA 89: 1914–1918, 1992

    PubMed  Google Scholar 

  84. Tang MS, Pierce JR, Doisy RP, Nazimiec ME, MacLeod MC: Differences and similarities in the repair of two benzo-[a]pyrene diol epoxide isomers induced DNA adducts by uvrA, uvrB, and uvrCgene products. Biochemistry 31: 8429–8436, 1992

    PubMed  Google Scholar 

  85. Sancer A: Mechanisms of DNA excision repair. Science 266: 1954–1956, 1994

    PubMed  Google Scholar 

  86. Athas WF, Hedayati M, Matanoski GM, Farmer ER, Grossman L: Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res 51: 5786–5793, 1991

    PubMed  Google Scholar 

  87. Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Grossman L: DNA Repair and susceptibility to skin cancer. Am J Epidemiol 140: 589–607, 1994

    Google Scholar 

  88. Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Grossman L: DNA Repair related to multiple skin cancers and drug use. Cancer Res 54: 437–440, 1994

    PubMed  Google Scholar 

  89. Wei Q, Cheng L, Hong WK, Spitz MR: Reduced DNA repair capacity in lung cancer patients. Cancer Res 56: 4103–4107, 1996

    PubMed  Google Scholar 

  90. Li D, Wang M, Cheng L, Spitz MR, Hittelman WN, Wei Q: In vitroinduction of benzo[a]pyrene diol epoxide-induced DNA adducts in peripheral lymphocytes as a susceptibility marker for human lung cancer. Cancer Res 56: 3638–3641, 1996

    PubMed  Google Scholar 

  91. Reddy MV, Randerath K: Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7: 1543–1551, 1986

    PubMed  Google Scholar 

  92. Watson WP: Postradiolabeling for detection of DNA damage. Mutagenesis 2: 319–331, 1987

    PubMed  Google Scholar 

  93. Phillips DH, Hewer A, Grover PL: Aromatic DNA adducts in human bone marrow and peripheral blood leukocytes. Carcinogenesis 7: 2071–2075, 1986

    PubMed  Google Scholar 

  94. Phillips DH, Hewer A, Martin CN, Garner RC, King MM: Correlation of DNA adduct levels in human lung with cigarette smoking. Nature 336: 790–792, 1988

    PubMed  Google Scholar 

  95. Reddy MV, Gupta RC, Randerath E, Randerath K: 32PPostlabeling test for covalent DNA binding of chemicals in vivo. Application to a variety of aromatic carcinogenes and methylating agents. Carcinogenesis 5: 231–243, 1984

    PubMed  Google Scholar 

  96. 96. van Schooten FJ, Hillebrand MJ, van Leeuwen FE, van Zandwijk N, Jansen HM, den Engelse L, Kriek E: Polycyclic aromatic hydrocarbon-DNA adducts in white blood cells from lung cancer patients: No correlation with adduct levels in the lung. Carcinogenesis 13: 987–993, 1992

    PubMed  Google Scholar 

  97. Savela K, Hemminki K: DNA Adducts in lymphocytes and granulocytes of smokers and nonsmokers detected by the 32P-postlabeling assay. Carcinogenesis 12: 503–508, 1991

    PubMed  Google Scholar 

  98. Gupta RC, Earley K, Sharma S: Use of human peripheral blood lymphocytes to measure DNA binding capacity of chemical carcinogens. Proc Natl Acad Sci USA 85: 3513–3517, 1988

    PubMed  Google Scholar 

  99. Everson RB, Randerath E, Santella RM, Cefalo RC, Avitts TA, Randerath K: Detection of smoking-related covalent DNA adducts in human placenta. Science 231: 54–59, 1986

    PubMed  Google Scholar 

  100. Geneste O, Camus AM, Castegaro M, Petruzzelli S, Macchiarini P, Angeletti CA, Giuntini C, Bartsch H: Comparison of pulmonary DNA adduct levels, measured by 32Ppostlabeling and aryl hydrocarbon hydroxylase activity in lung parenchyma of smokers and ex-smokers. Carcinogenesis 12: 1301–1305, 1991

    PubMed  Google Scholar 

  101. Barret JM, Calsou P, Salles B: Deficient nucleotide excision repair activity in protein extracts from normal human lymphocytes. Carcinogenesis 7: 1611–1616, 1995

    Google Scholar 

  102. Krolewski B. Little JB, Reynolds RJ: Effect of duration of exposure to benzo[a]pyrene diol-epoxide on neoplastic transformation, mutagenesis, cytotoxicity and total covalent binding to DNA of rodent cells. Teratog Carcinog Mutagen 8: 127–136, 1988

    PubMed  Google Scholar 

  103. Vineis P, Caporaso N: Tobacco and cancer epidemiology and the laboratory. Environ Health Perspect 103: 156–160, 1995

    PubMed  Google Scholar 

  104. Denissenko MF, Pao A, Tang M, Pfeifer GP: Preferential formation of benzo[a]pyrene adducts at lung mutational hotspots in p53. Science 274: 430–432, 1996

    PubMed  Google Scholar 

  105. Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 Mutations in human cancer. Science 53: 49–53, 1991

    Google Scholar 

  106. Greenblatt MS, Bennett WP, Hollstein M, Harris CC: Mutations in p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878, 1994

    PubMed  Google Scholar 

  107. Mao L, Lee JS, Fan YH, Ro JY, Batsakis JG, Lippman S, Hittleman W, Hong WK: Frequent microsatellite alterations at chromosome 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med 2: 682–685, 1996

    PubMed  Google Scholar 

  108. Mao L, Lee JS, Kurie JM, Khuri FR, Fan YH, Lippman SM, Lee JJ, Ro JY, Hittelman WN, Hong WK: Frequent genetic alterations in bronchial epithelium of smokers. Proceedings of the American Association Cancer Research (in press)

  109. Sozzi G, Veronese ML, Negrini M, Baffa R, Cotticelli MG, Inoue H, Tornielli S, Pilotti S, De Gregorio L, Pastorino U, Pierotti MA, Ohta M, Huebner K, Croce CM: The FHIT gene at 3p14.2 is abnormal in lung cancer. Cell 85: 17–26, 1996

    PubMed  Google Scholar 

  110. Wiencke JK, Kelsey KT, Varkonyi A, Semey K, Wain JC, Mark E, Christiani DC: Correlation of DNA adducts in blood mononuclear cells with tobacco carcinogen-induced damage in human lung. Cancer Res 55: 4910–4914, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q., Spitz, M.R. The role of DNA repair capacity in susceptibility to lung cancer: A review. Cancer Metastasis Rev 16, 295–307 (1997). https://doi.org/10.1023/A:1005852211430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005852211430

Navigation