Skip to main content
Log in

Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L.) Heynh.

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plants of Arabidopsis thaliana pre-treated at 37 °C for 2 h can survive an otherwise lethal heat shock at 45 °C. Differential display reverse transcriptase-PCR (DDRT-PCR) was utilized to clone DNA fragments corresponding to mRNAs specifically expressed in conditions of induced thermotolerance or of expression of thermotolerance. One of these DDRT-PCR fragments enabled the isolation of a genomic clone pAt1.3EX, containing the sequence Athsp23.5, the gene for a low-molecular-weight (LMW) heat shock protein (HSP), AtHSP23.5. Athsp23.5 is low- or single-copy in the Arabidopsis genome and its open reading frame is interrupted by a 137 bp intron. Analysis of the sequence suggests AtHSP23.5 is targeted to the mitochondrion. The steady-state level of the AtHSP23.5 mRNA varied significantly according to the heat treatment, increasing on heat shock (transfer from 22 °C to 37 °C), with a further increase during expression of thermotolerance (transfer from 22 °C to 37 °C and then to 45 °C). Expression was low after an abrupt stress (from 22 °C to 45 °C). This behaviour was different from that observed for other LMW HSP mRNAs that were present at high level at 37 °C, but did not increase significantly in condition of expression of thermotolerance, and reached a considerable steady-state level also during the abrupt stress at 45 °C. The retrotranscription of AtHSP23.5 mRNA followed by amplification with two primers encompassing the intron allowed for the isolation of an almost full-length cDNA sequence. The sequence analysis of the two cDNAs obtained from condition 22 °C→37 °C and condition 22 °C→37 °C→45 °C suggested that in both cases the intron had been correctly spliced. The importance of correct intron splicing in survival at high temperatures and the role of mitochondrial HSP in induction and expression of thermotolerance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215: 403-410 (1990).

    Google Scholar 

  2. Amin J, Ananthan J, Voellmy R: Key features of heat shock regulatory elements. Mol Cell Biol 8: 3761-3769 (1988).

    PubMed  Google Scholar 

  3. Bartling D, Bülter H, Liebeton K, Weiler EW: An Arabidopsis thalianacDNA clone encoding a 17.6 kDa class II heat shock protein. Plant Mol Biol 18: 1007-1008 (1992).

    PubMed  Google Scholar 

  4. Dellavalle RP, Petersen R, Lindquist S: Preferential deadenylation of Hsp70mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster. Mol Cell Biol 14: 3646-3659 (1994).

    PubMed  Google Scholar 

  5. Dong JZ, Dunstan DI: Characterization of three heat-shockprotein genes and their developmental regulation during somatic embryogenesis in white spruce [Picea glauca(Moench) Voss]. Planta 200: 85-91 (1996).

    Article  PubMed  Google Scholar 

  6. Feinberg AP, Vogelstein B: Atechnique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6-13 (1983).

    PubMed  Google Scholar 

  7. Gavel Y, von Heijne G: Cleavage-site motifs in mitochondrial targeting peptides. Prot Eng 4: 33-37 (1990).

    Google Scholar 

  8. Gish W, States DJ: Identification of protein regions by database similarity search. Nat Genet 3: 266-272 (1993).

    Article  PubMed  Google Scholar 

  9. Helm KW, Schmeits J, Vierling E: An endomembranelocalized small heat-shock protein from Arabidopsis thaliana. Plant Physiol 107: 287-288 (1995).

    Article  PubMed  Google Scholar 

  10. Helm KW, Vierling E: An ArabidopsiscDNA clone encoding a low molecular weight heat shock protein. Nucl Acids Res 17: 7995 (1989).

    PubMed  Google Scholar 

  11. Jäättelä M, Wissing D: Emerging role of heat shock proteins in biology and medicine. Ann Med 24: 249-258 (1992).

    PubMed  Google Scholar 

  12. Jakob U, Buchner J: Assisting spontaneity: the role of HSP 90 and small Hsps as molecular chaperones. Trends Biochem Sci 19: 205-211 (1994).

    Article  PubMed  Google Scholar 

  13. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants. Nucl Acids Res 15: 9627-9640 (1987).

    PubMed  Google Scholar 

  14. Joshi CP, Kumar S, Nguyen HT: Application of modified differential display technique for cloning and sequencing of the 3′ region from three putative members of wheat HSP70 gene family. Plant Mol Biol 30: 641-646 (1996).

    PubMed  Google Scholar 

  15. Joshi CP, Nguyen HT: 5′ untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins. Nucl Acids Res 23: 541-549 (1995).

    PubMed  Google Scholar 

  16. Joshi CP, Nguyen HT: Differential display-mediated rapid identification of different members of a multigene family,HSP16.9 in wheat. Plant Mol Biol 31: 575-584 (1996).

    PubMed  Google Scholar 

  17. Knack G, Kloppstech K: cDNA sequence of a heat-inducible protein of Chenopodiumsharing little homology with other heat-shock proteins. Nucl Acids Res 17: 5380 (1989).

    PubMed  Google Scholar 

  18. Knack G, Liu Z, Kloppstech K: Low molecular mass heatshock proteins of a light-resistant photoautotrophic cell culture. Eur J Cell Biol 59: 166-175 (1992).

    PubMed  Google Scholar 

  19. Kyte J, Doolittle RF: Asimplemethod for displaying the hydropathic character of a protein. J Mol Biol 157: 105-132 (1982).

    PubMed  Google Scholar 

  20. LaFayette PR, Nagao RT, O'Grady K, Vierling E, Key JL: Molecular characterization of cDNAs encoding lowmolecular-weight heat shock proteins of soybean. Plant Mol Biol 30: 159-169 (1996).

    PubMed  Google Scholar 

  21. Laszlo A, Li GC: Heat resistant variants of Chinese hamster fibroblasts altered in expression of heat shock protein. Proc Natl Acad Sci USA 82: 8029-8033 (1985).

    PubMed  Google Scholar 

  22. Lee JH, Hüber A, Schöffl F: Derepression of the activity of genetically engineered heat-shock factor causes constitutive synthesis of heat-shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8: 603-612 (1995).

    Article  PubMed  Google Scholar 

  23. Lee JH, Schöffl F:AnHSP70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252: 11-19 (1996).

    Article  PubMed  Google Scholar 

  24. Lenne C, Block MA, Garin J, Douce R: Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J 311: 805-813 (1995).

    PubMed  Google Scholar 

  25. Lenne C, Douce R: A low molecular mass heat-shock protein is localized to higher plant mitochondria. Plant Physiol 105: 1255-1261 (1994).

    PubMed  Google Scholar 

  26. Liang P, Averboukh L, Pardee AB: Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucl Acids Res 21: 3269-3275 (1993).

    PubMed  Google Scholar 

  27. Liang P, Pardee AB: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967-971 (1992).

    PubMed  Google Scholar 

  28. Lindquist S: The heat-shock response. Annu Rev Biochem 55: 1151-1191 (1986).

    Article  PubMed  Google Scholar 

  29. Lindquist S, Craig EA: The heat shock proteins. Annu Rev Genet 22: 631-677 (1988).

    Article  PubMed  Google Scholar 

  30. Loomis WF, Wheeler SA: Chromatin-associated heat shock proteins in Dictyostelium. Devel Biol 90: 412-418 (1982).

    Article  Google Scholar 

  31. Marmiroli N, Maestri E, Terzi V, Gulli M, Pavesi A, Raho G, Lupotto E, Di Cola G, Sinibaldi R, Perrotta C: Genetic and molecular evidences of the regulation of gene expression during heat shock in plants. In: Cherry JH (ed) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATOASI Series, Series H: Cell Biology, vol. 86, pp. 157-190. Springer-Verlag, Berlin (1993).

    Google Scholar 

  32. Morimoto RI, Tissiéres A, Georgopoulos C: The stress response, function of the proteins, and perspectives. In: Morimoto RI, Tissiéres A, Georgopoulos C (eds) Stress Proteins in Biology and Medicine, pp. 1-36. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1990).

    Google Scholar 

  33. Mount SM: A catalogue of splice junction sequences. Nucl Acids Res 10: 1406-1410 (1981).

    Google Scholar 

  34. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497 (1962).

    Google Scholar 

  35. Nover L: Gene technology and functional analyses of heat shock genes. In: Nover L (ed), Heat-Shock Response, pp. 167-220. CRC Press, Boca Raton, FL (1991).

    Google Scholar 

  36. Nover L: Induced thermotolerance. In: Nover L (ed), Heat-Shock Response, pp. 409-452. CRC Press, Boca Raton, FL (1991).

    Google Scholar 

  37. Osteryoung KW, Sundberg H, Vierling E: Poly(A) tail length of a heat-shock protein RNA is increased by severe heat-stress, but intron splicing is unaffected. Mol Gen Genet 239: 323-333 (1993).

    Article  PubMed  Google Scholar 

  38. Reiter RS, Young RM, Scolnik PA: Genetic linkage of the Arabidopsisgenome: methods for mapping with recombinant inbreds and random amplified polymorphic DNAs (RAPDs). In: Koncz C, Chua NH, Schell J (eds) Methods in Arabidopsis Research, pp. 170-190.World Scientific Publishing, Singapore (1992).

    Google Scholar 

  39. Ritossa FM: A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18: 571-573 (1962).

    Google Scholar 

  40. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  41. Sanchez Y, Lindquist SL: HSP104 required for induced thermotolerance. Science 248: 1112-1115 (1990).

    PubMed  Google Scholar 

  42. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74: 5463 (1977).

    PubMed  Google Scholar 

  43. Schöffl F, Bauman G, Raschke E: The expression of heat shock genes-a model for environmental stress response. In: Verma DPS, Goldberg RB (eds) Temporal and Spatial Regulation of Plant Genes, pp. 253-273. Springer-Verlag, Wien (1988).

    Google Scholar 

  44. Sharma YK, Davis KR: Isolation of a novel Arabidopsisozoneinduced cDNA by differential display. Plant Mol Biol 29: 91-98 (1995).

    PubMed  Google Scholar 

  45. Sinibaldi RM, Mettler I: Intron splicing and intron-mediated enhanced expression in monocots. Progr Nucl Acids Res Mol Biol 42: 229-257 (1992).

    Google Scholar 

  46. Sinibaldi RM, Turpen T: Aheat shock protein is encodedwithin mitochondria of higher plants. J Biol Chem 260: 15382-15385 (1985).

    PubMed  Google Scholar 

  47. Sullivan ML, Green PJ: Post-transcriptional regulation of nuclear-encoded genes in higher plants: the roles of mRNA stability and translation. PlantMol Biol 23: 1091-1104 (1993).

    Google Scholar 

  48. Takahashi T, Komeda Y: Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Mol Gen Genet 219: 365-372 (1989).

    Article  PubMed  Google Scholar 

  49. Takahashi T, Naito S, Komeda Y: Isolation and analysis of the expression of two genes for the 81-kilodalton heat-shock proteins from Arabidopsis. Plant Physiol 99: 383-390 (1992).

    Google Scholar 

  50. van Tunen AJ, Koes RE, Spelt CE, van der Krol AR, Stuitje AR, Moe JNM: Cloning of two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light regulated and differential expression of flavonoid gene. EMBO J 7: 1257-1263 (1988).

    PubMed  Google Scholar 

  51. Vierling E: The role of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579-620 (1991).

    Article  Google Scholar 

  52. Vierling E, Nagao RT, DeRocher AE, Harris L: A heat shock protein localized to chloroplast is a member of a eukaryotic superfamily of heat shock proteins. EMBO J 7: 575-581 (1988).

    PubMed  Google Scholar 

  53. Visioli G, Rossi P, Maestri E, Marmiroli N: Molecular and genetic analysis of thermotolerance. In: Leigh RA, Blake-Kalff MMAM(eds) Proceedings of the second STRESSNET conference, pp. 77-81. European Commission, Directorate General VI (1995).

  54. Vogel JL, Parsell DA, Lindquist S: Heat-shock proteinsHsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol 5: 306-317 (1995).

    Article  PubMed  Google Scholar 

  55. Waters ER: The molecular evolution of the small heat-shock proteins in plants. Genetics 141: 785-795 (1995).

    PubMed  Google Scholar 

  56. Welte MA, Tetrault JM, Dellavalle RP, Lindquist SL: A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Curr Biol 3: 805-915 (1993).

    Article  PubMed  Google Scholar 

  57. Winter J, Wright R, Duck N, Gasser C, Fraley R, Shah D: The inhibition of petunia hsp70 mRNA processing during CdCl2 stress. Mol Gen Genet 211: 315-319 (1988).

    Article  Google Scholar 

  58. Xiao C-M, Mascarenhas JP: High temperature-induced thermotolerance in pollen tubes of Tradescantiaand heat-shock proteins. Plant Physiol 78: 887-890 (1985).

    Google Scholar 

  59. Yahara I, Iida H, Koyasu S: A heat shock-resistant variant of Chinese hamster cell line constitutively expressing heat shock protein of Mr 90 000 at high level. Cell Struct Funct 11: 65-73 (1986).

    PubMed  Google Scholar 

  60. Yost HJ, Lindquist S: Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol Cell Biol 11: 1062-1068 (1991).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visioli, G., Maestri, E. & Marmiroli, N. Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L.) Heynh.. Plant Mol Biol 34, 517–527 (1997). https://doi.org/10.1023/A:1005824314022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005824314022

Navigation