Skip to main content
Log in

Molecular and cellular biology of prostate cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Prostate cancer is an enigmatic disease. Although prostatic-intraepithelial neoplasia appears as early as the third decade and as many as 80% of 80 year old men have epithelial cells in their prostate that fit the morphological criteria for cancer, only about 10% of men will ever have the clinical disease and less than 3% will die from it. There have been no significant proven interventions which have altered the natural history of the disease since hormone down regulation was introduced in the 1940s and new research has been poorly supported. There is however an urgent need to develop new criteria to distinguish those patients with localised disease who will benefit from intervention from those that do not require it or who will have occult extra prostatic metastases. Similarly, there is an urgent need to develop new treatment for those in whom the disease is extra-prostatic and therefore incurable by conventional treatments. This review covers the latest developments in epidemiology, cellular and molecular biology including new areas such as ion channels in the field of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Woolf SH: Screening for prostate cancer with prostate-specific antigen. An examination of the evidence. [Review]. N Engl J Med 333: 1401–1405, 1995

    Google Scholar 

  2. Parkin DM, Pisani P, Ferlay J: Estimates of the worldwide incidence of 18 major cancers in 1985. Int J Cancer 54: 594–606, 1993

    Google Scholar 

  3. Boyle P, Maisonneuve P, Napalkov P: Incidence of prostate cancer will double by the year 2030: the argument for. Eur Urol 29(Suppl 2): 3–9, 1996

    Google Scholar 

  4. Jensen OM, Esteve J, Moller H, Renard H: Cancer in the European Community and its member states. Eur J Cancer 25: 1167–1256, 1990

    Google Scholar 

  5. Boring CC, Squires TS, Tong T: Cancer Statistics CA. Cancer J Clin 44: 7–26, 1994

    Google Scholar 

  6. Boyle P, Maisonneuve P, Napalkov P: The threat to health and strategies for control. In: Peeling WB (ed) Questions and Uncertainties about Prostate Cancer, pp. 3–29, Oxford: Blackwell Science, 1996

    Google Scholar 

  7. Parker SL, Tong T, Bolden S, Wingo PA: Cancer Statistics 1996, CA, Cancer J Clin 1996

  8. Schroder FH, Boyle P: Screening for prostate cancer — necessity or nonsense? [Review] Eur J Cancer 29A: 656–661, 1993

    Google Scholar 

  9. Potosky AL, Miller BA, Albertsen PC, Kramer BS: The role of increasing detection in the rising incidence of prostate cancer. JAMA 273: 548–552, 1995

    Google Scholar 

  10. Walsh PC: Using prostate-specific antigen to diagnose prostate cancer: sailing in uncharted waters [editorial; comment] [see comments]. Ann Intern Med 119: 948–949, 1993

    Google Scholar 

  11. Hall RR: Screening and early detection of prostate cancer will decrease morbidity and mortality from prostate cancer: the argument against. Eur Urol 29(Suppl 2): 24–26, 1996

    Google Scholar 

  12. Kramer BS, Brown ML, Prorok PC, Potosky AL, Gohagan JK: Prostate cancer screening: what we know and what we need to know. Ann Intern Med 119: 914–923, 1996

    Google Scholar 

  13. Haenszel W, Kurihara M: Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. Natl Cancer Inst Monogr 40: 43–68, 1996

    Google Scholar 

  14. Anonymous: Primer on molecular control of prostate cancer growth. New Jersey: Whitchouse Station, Merck, 1994

  15. Giovannucci E, Rimm EB, Colditz GA, Stampfer MJ, Ascherio A, Chute CC, Willett WCA: A prospective study of dietary fat and risk of prostate cancer [see comments]. J Natl Cancer Inst 85: 1571–1579, 1993

    Google Scholar 

  16. The alpha-tocopherol, beta-carotene cancer prevention study group. The effect of vitamin E and beta-carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330: 1029–1035, 1994

    Google Scholar 

  17. Corder EH, Guess HA, Hulka BS, Friedman GD, Sadler M, Vollmer RT, Lobaugh B, Drezner MK, Vogelman JH, Orentreich N: Vitamin D and prostate cancer: a prediagnostic study with stored sera [see comments]. Cancer Epidemiol Biomarkers Prev 2: 467–472, 1993

    Google Scholar 

  18. Morrison H, Savitz D, Semenciw R, Hulka B, Mao Y, Morison D, Wigle D: Farming and prostate cancer mortality [see comments]. Am J Epidemiol 137: 270–280, 1993

    Google Scholar 

  19. Dosemeci M, Hoover RN, Blair A, Figgs LW, Devesa S, Grauman D, Fraumeni JF Jr: Farming and prostate cancer among African-Americans in the southeastern United States. J Natl Cancer Inst 86: 1718–1719, 1994

    Google Scholar 

  20. Ekbom A, Hsieh CC, Lipworth L, Wolk A, Ponten J, Adam HO, Trichopoulos D: Perinatal characteristics in relation to incidence of and mortality from prostate cancer. Br Med J 313: 337–341, 1996

    Google Scholar 

  21. Whitmore WF Jr: Natural history of low-stage prostatic cancer and the impact of early detection. Urol Clin North Am 17: 689–697, 1990

    Google Scholar 

  22. Young HH: The early diagnosis and radical cure of carcinoma of the prostate; being a study of 40 cases and presentation of a radical operation which was carried out in 4 cases. Bull Johns Hopkins Hosp 16: 315–318, 1905

    Google Scholar 

  23. Lu-Yao GL, Greenberg ER: Changes in prostate cancer incidence and treatment in USA [see comments]. Lancet 343: 251–254, 1994

    Google Scholar 

  24. Williams G: Radical prostatectomy in localised prostate cancer. In: Waxman J, Williams G (eds) Urological Oncology, London: Edward Arnold, 1992

    Google Scholar 

  25. Breslow N, Chan CE, Dhom G, Drury RAB, Frank LM, Gellei B, Lee YS, Lundberg S, Sparke B, Sternby NH, Tulinius H: Latent carcinoma of the prostate at autopsy in 7 areas. Int J Cancer 20: 680–688, 1996

    Google Scholar 

  26. Schroder FH: Detection of prostate cancer [editorial] [see comments]. Br Med J 310: 140–141, 1995

    Google Scholar 

  27. Ayala AG, Ro JY, Babaian R, Troncoso P, Grignon DJ: The prostatic capsule: does it exist? Its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol 13: 21–27, 1989

    Google Scholar 

  28. McNeal JE: Normal histology of the prostate. Am J Surg Pathol 12: 619–633, 1988

    Google Scholar 

  29. McNeal JE, Bostwick DG: Anatomy of the prostate: implications for disease. In: Bostwick DG (ed) Pathology of the Prostate, pp. 1–14, New York: Churchill Livingstone, 1990

    Google Scholar 

  30. McNeal JE: Origin and development of carcinoma in the prostate. Cancer 23: 24–34, 1969

    Google Scholar 

  31. Allsbrook WC Jr, Simms WW: Histochemistry of the prostate [see comments]. [Review]. Hum Pathol 23: 297–305, 1992

    Google Scholar 

  32. Leong AS, Gilham P, Milos J: Cytokeratin and vimentin intermediate filament proteins in benign and neoplastic prostatic epithelium. Histopathology 13: 435–442, 1988

    Google Scholar 

  33. Ruizeveld de Winter JA, Janssen PJ, Sleddens HM, Verleun-Mooijman MC, Trapman J, Brinkmann AO, Santerse AB, Schroder FH, Van der Kwast TH: Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Patiol 144: 735–746, 1994

    Google Scholar 

  34. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, Sugimura Y: The endocrinology and developmental biology of the prostate. [Review]. Endocr Rev 8: 338–362, 1987

    Google Scholar 

  35. Bonkhoff H, Stein U, Remberger K: Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol 25: 42–46, 1994

    Google Scholar 

  36. Gown AM, Vogel AM: Monoclonal antibodies to human intermediate filament proteins: distribution of filament proteins in normal human tissues. Am J Pathol 114: 309–321, 1984

    Google Scholar 

  37. Hedrick L, Epstein JI: Use of keratin 903 as an adjunct in the diagnosis of prostate carcinoma. Am J Surg Pathol 13: 389–396, 1989

    Google Scholar 

  38. O'Malley FP, Grignon DJ, Shum DT: Usefulness of immunoperoxidase staining with high-molecular-weight cytokeratin in the differential diagnosis of small-acinar lesions of the prostate gland. Virchows Arch A Pathol Anat Histopathol 417: 191–196, 1990

    Google Scholar 

  39. Kramer CE, Epstein JI: Nucleoli in low-grade prostate adenocarcinoma and adenosis. Hum Pathol 24: 618–623, 1993

    Google Scholar 

  40. Collina G, Botticelli AR, Martinelli AM, Fano RA, Trentini GP: Sclerosing adenosis of the prostate, Report of 3 cases with electronmicroscopy and immunohistochemical study. Histopathology 20: 505–510, 1992

    Google Scholar 

  41. Kahane H, Sharp JW, Shuman GB, Dasilva G, Epstein JI: Utilization of high molecular weight cytokeratin on prostate needle biopsics in an independent laboratory. Urology 45: 981–986, 1995

    Google Scholar 

  42. Howat AJ, Mills PM, Lyons TJ, Stephenson TJ: Absence of S-100 protein in prostatic glands. Histopathology 13: 468–470, 1988

    Google Scholar 

  43. Srigley JR, Dardick I, Hartwick RW, Klotz LH: Basal epithelial cells of human prostate gland are not myoepithelial cells. A comparative immunohistochemical and ultrastructural study with human salivary gland. Am J Pathol 136: 957–966, 1990

    Google Scholar 

  44. Bonkhoff H, Remberger K: Widespread distribution of nuclear androgen receptor in the basal cell layer of the normal and hyperplastic human prostate. Virchows Arch A Pathol Anat Histopathol 422: 35–38, 1993

    Google Scholar 

  45. Chodak GW, Kranc DM, Puy LA, Takeda H, Johnson K, Chang C: Nuclear localization of androgen receptor in heterogeneous samples of normal, hyperplastic and neoplastic human prostate. J Urol 147: 798–803, 1992

    Google Scholar 

  46. Cohen RJ, Glezerson G, Taylor LF, Grundle HA, Naude JH. The neuroendocrine cell population of the human prostate gland. J Urol 150: 365–368, 1993

    Google Scholar 

  47. Abrahamsson PA, di Sant'Agnese PA: Neuroendocrine cells in the human prostate gland. [Review]. J Androl 14: 307–309, 1993

    Google Scholar 

  48. Aprikian AG, Cordon-Cardo C, Fair WR, Reuter VE: Characterization of neuroendocrine differentiation in human benign prostate and prostatic adenocarcinoma. Cancer 71: 3952–3965, 1993

    Google Scholar 

  49. di Sant'Agnese PA, de Mesy Jensen KL, Churukian CJ, Agarwal MM: Human prostatic endocrine-paracrine (APUD) cells. Distributional analysis with a comparison of serotonin and neuron-specific enolase immunoreactivity and silver stains. Arch Pathol Lab Med 109: 607–612, 1985

    Google Scholar 

  50. Davis NS, di Sant'Agnese PA, Ewing JF, Mooney RA: The neuroendocrine prostate: characterization and quantitation of calcitonin in the human gland. J Urol 142: 884–888, 1989

    Google Scholar 

  51. Bonkhoff H, Stein U, Remberger K: Androgen receptor status in endocrine-paracrine cell types of the normal, hyperplastic, and neoplastic human prostate. Virchows Arch A Pathol Anat Histopathol 423: 291–294, 1993

    Google Scholar 

  52. Noordzij MA, Van Steenbrugge GJ, Van der Kwast TH, Schroder FH: Neuroendocrine cells in the normal, hyperplastic and neoplastic prostate. [Review]. Urol Res 22: 333–341, 1995

    Google Scholar 

  53. di Sant'Agnese PA: Neuroendocrine differentiation in the precursors of prostate cancer. Eur Urol 30: 185–190, 1996

    Google Scholar 

  54. Kabalin JN, Peehl DM, Stamcy TA: Clonal growth of human prostatic epithelial cells is stimulated by fibroblasts. Prostate 14: 251–263, 1989

    Google Scholar 

  55. Chung LW, Gleave ME, Hsieh JT, Hong SJ, Zhau HE: Reciprocal mesenchymal-epithelial interaction affecting prostate tumour growth and hormonal responsiveness. [Review]. Cancer Surv 11: 91–121, 1991

    Google Scholar 

  56. Cunha GR, Chung LWK, Sannon JM, Taguihi O, Fujii H: Hormone induced morphogenesis and growth: role of mesenchymal interactions. Recent Prog Horm Res 39: 559–598, 1993

    Google Scholar 

  57. Cunha GR, Chung LWK: Stromal epithelial interaction. Induction of prostate phenotype in urothelium of testicular feminized (TFm/y) mice. J Steroid Biochem 14: 1317–1312, 1981

    Google Scholar 

  58. Cunha GR: Epithelial stromal interactions in the development of the urogenital tract. Int Rev Cytol 47: 137–194, 1976

    Google Scholar 

  59. Bostwick DG: Is the behaviour of prostate cancer understood? In: Peeling WB (ed) Questions and Uncertainties about Prostate Cancer, pp. 30–49, Oxford: Blackwell Science, 1996

    Google Scholar 

  60. Bostwick DG: Progression of prostatic intraepithelial neoplasia to early invasive adenocarcinoma. Eur Urol 30: 145–152, 1996

    Google Scholar 

  61. Epstein JI, Grignon DJ, Humphrey PA, McNeal JE, Sesterhenn IA, Troncoso P, Wheeler TM: Interobserver reproducibility in the diagnosis of prostatic intraepithelial neoplasia. Am J Surg Pathol 19: 873–886, 1995

    Google Scholar 

  62. Raviv G, Janssen T, Zlotta AR, Descamps F, Verhest A, Schulman CC: Prostatic intraepithelial neoplasia: influence of clinical and pathological data on the detection of prostate cancer. J Urol 156: 1050–1055, 1996

    Google Scholar 

  63. Bostwick DG, Cooner WH, Denis L, Jones GW, Scardino PT, Murphy GP: The association of benign prostatic hyperplasia and cancer of the prostate. [Review]. Cancer 70: 291–301, 1992

    Google Scholar 

  64. Bostwick DG: High grade prostatic intraepithelial neoplasia (PIN), the most likely precursor of prostate cancer. Cancer 75: 1823–1836, 1993

    Google Scholar 

  65. Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD: The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients [see comments]. J Urol 150: 379–385, 1993

    Google Scholar 

  66. Barctron GB, Vogt T, Blasenbreu S, Lohrs U: Comparison of DNA ploidy in prostatic intraepithelial neoplasia and invasive carcinoma of the prostate: an image cytometric study. Hum Pathol 25: 506–513, 1994

    Google Scholar 

  67. Crissman JD, Sakr WA, Hussein ME, Pontes JE: DNA quantitation of intraepithelial neoplasia and invasive carcinoma of the prostate. Prostate 22: 155–162, 1993

    Google Scholar 

  68. Weinberg DS, Weidner N: Concordance of DNA content between prostatic intraepithelial neoplasia and concomitant invasive carcinoma. Evidence that prostatic intraepithelial neoplasia is a precursor of invasive prostatic carcinoma. Arch Pathol Lab Med 117: 1132–1137, 1993

    Google Scholar 

  69. Arends MJ, Bird CC: Recombinant DNA technology and its diagnostic applications. Histopathology 21: 303–313, 1992

    Google Scholar 

  70. Crocker J: Molecular biology in histopathology. Chichester: John Wiley and Sons, 1994

    Google Scholar 

  71. Grody WW, Gatti RA, Naeim F: Diagnostic molecular pathology. Mod Pathol 2: 553–568, 1989

    Google Scholar 

  72. Rowley JD, Aster JC, Sklar J: The impact of new DNA diagnostic technology on the management of cancer patients. Survey of diagnostic techniques. Arch Pathol Lab Med 117: 1104–1109, 1993

    Google Scholar 

  73. Sklar J: DNA hybridization in diagnostic pathology. Hum Pathol 16: 654–658, 1985

    Google Scholar 

  74. Molecular techniques in diagnostic pathology. Hum Pathol 25: 555–614, 1994

  75. Lee C, Shevrin DH, Kozlowski JM: In vivo and in vitro approaches to study metastasis in human prostatic cancer. [Review]. Cancer Metastasis Rev 12: 21–28, 1993

    Google Scholar 

  76. Isaacs JT, Isaacs WB, Feitz WW, Scheres J: Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate 9: 261–281, 1986

    Google Scholar 

  77. Hedlund TE, Moffatt KA, Miller GJ: Stable expression of the nuclear vitamin D receptor in the human prostatic carcinoma cell line JCA-1: evidence that the antiproliferative effects of 1 alpha. 25-dihydroxyvitamin D3 are mediated exclusively through the genomic signaling pathway. Endocrinology 137: 1554–1561, 1996

    Google Scholar 

  78. Naghashfar Z, DiPaolo JA, Woodworth CD, Passaniti A: Immortalization of human adult prostatic adenocarcinoma cells by human papilloma virus HPV16 and-18DNA. Cancer Lett 100: 47–54, 1996

    Google Scholar 

  79. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP: LNCaP model of human prostatic carcinoma. Cancer Res 43: 1909–1818, 1983

    Google Scholar 

  80. Murakami YS, Albertsen H, Brothman AR, Leach RJ, White RL: Suppression of the malignant phenotype of human prostatic cancer cell line PPC-1 by introduction of normal fragments of human chromosome 10. Cancer Res 56: 2157–2160, 1996

    Google Scholar 

  81. Hurkadli KS, Lokeshwar B, Sheth AR, Block NL: Detection of prostatic-inhibin-like peptide in the cytoplasm of LNCaP cells, a human prostatic adenocarcinoma cell line. Prostate 24: 285–290, 1994

    Google Scholar 

  82. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD: Expression of the prostate-specific membrane antigen. Cancer Res 54: 1807–1811, 1994

    Google Scholar 

  83. Furr BJ, Tucker H: The preclinical development of bicalutamide: pharmacodynamics and mechanism of action Urology 47: 13–25; discussion 29–32, 1996

    Google Scholar 

  84. Taplin M-E, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP: Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332: 1393–1398, 1995

    Google Scholar 

  85. Lee C, Shevrin DH, Kozlowski JM: In vivo and in vitro approaches to study metastasis in human prostatic cancer [Review]. Cancer Metastasis Rev 12: 21–28, 1993

    Google Scholar 

  86. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW: Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16–23, 1979

    Google Scholar 

  87. Garde SV, Sheth AR, Porter AT, Pienta KJ: A comparative study on expression of prostatic inhibin peptide, prostate acid phosphatase and prostate spectic antigen in androgen independent human and rat prostate carcinoma cell lines. Cancer Lett 70: 159–166, 1993

    Google Scholar 

  88. Stearns ME, Wang M, Stearns M: IL-10 blocks collagen IV invasion by ‘invasion stimulating factor’ activated PC-3 MI-cells: upregulation of TIMP-1 expression. Oncol Res 7: 157–163, 1995

    Google Scholar 

  89. Bishop JM: Molecular themes in oncogenesis. Cell 64: 235–248, 1996

    Google Scholar 

  90. Lisitsyn N, Wigler M: Cloning the differences between 2 complex genomes. Science 259: 946–951, 1993

    Google Scholar 

  91. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC: KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268: 884–886, 1995

    Google Scholar 

  92. Berthon P, Dimitrov T, Stower M, Cussenot O, Maitland NJ: A microdissection approach to detect molecular markers during progression of prostate cancer. Br J Cancer 72: 946–951, 1995

    Google Scholar 

  93. Innis MA, Gelfand GH, Sninsky JJ, White TJ: PCR protocols, a guide to methods and applications. San Diego, California: Academic Press, 1990

    Google Scholar 

  94. Jackson V: Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15: 945–954, 1978

    Google Scholar 

  95. Yasui W, Ito H, Tahara E: DNA analysis of archival material and its application to tumour pathology. Diagnostic molecular pathology. A practical approach. Oxford: IRL Press, 1992

    Google Scholar 

  96. Eisenberg M, Chimera JA: Human identification by DNA analysis. Diagnostic molecular pathology. A practical approach. Oxford: IRL Press, 1992

    Google Scholar 

  97. Orita M, Suzuki Y, Sekiya T, Hayashi K: Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879, 1989

    Google Scholar 

  98. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T: Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766–2770, 1989

    Google Scholar 

  99. Gall JG, Parduc ML: Formation and detection of RNA-DNA hyrid molecules in cytological preparations. Proc Natl Acad Sci USA 63: 378–383, 1969

    Google Scholar 

  100. Herrington S, McGee JO: Diagnostic molecular pathology: A practical approach. In: Herrington CS, McGee JO (eds) Principles and Basic Methodology of DNA/RNA Detection by in situ Hybridization, pp. 69–102, Oxford: IRL Press, 1992

    Google Scholar 

  101. Trent JM: Clinical correlations of chromosome change in human solid tumors: the tip of the iceberg? J Natl Cancer Inst 81: 1874–1878, 1989

    Google Scholar 

  102. Sandberg AA, Ture-Carel C, Gemmill RM: Chromosomes in solid tumors and beyond. Cancer Res 48: 1049–1059, 1988

    Google Scholar 

  103. Morrison L, Legator M: Multicolor in situ hybridisation using direct labelled fluorescent probes. Clin Chem 39: 733–734, 1993

    Google Scholar 

  104. Alcaraz A, Takahashi S, Brown JA, Herath JF, Bergstralh EJ, Larson-Keller JJ, Lieber MM, Jenkins RB: Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res 54: 3998–4002, 1994

    Google Scholar 

  105. Mullis KB, Faloona FA: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–350, 1987

    Google Scholar 

  106. McPherson MJ, Quirke P, Taylor GR (eds): PCR, A practical approach. Oxford: IRL Press, 1991

    Google Scholar 

  107. Brothman AR, Peehl DM, Patel AM, McNeal JE: Frequency and pattern of karyotypic abnormalities in human prostate cancer. Cancer Res 50: 3795–3803, 1990

    Google Scholar 

  108. Konig H, Tenbel W, Van Dongen IW, Hagemeijer A, Romijn JC, Schroder FH: Tissue culture loss of ancuploid cells from carcinomas of the prostate. Genes Chromosom Cancer 8: 22–27, 1993

    Google Scholar 

  109. Micale MA, Mohamed A, Sakr W, Powell IJ, Wolman SR: Cytogenetics of primary prostatic adenocarcinoma. Clonality and chromosome instability. Cancer Genel Cytogenet 61: 165–173, 1992

    Google Scholar 

  110. Bandyk MG, Zhao L, Troncoso P, Pisters LL, Palmer JL, von Eschenbach AC, Chung LW, Liang JC: Trisomy 7: a potential cytogenetic marker of human prostate cancer progression. Genes Chromosom Cancer 9: 19–27, 1994

    Google Scholar 

  111. Takahashi S, Shan AL, Ritland SR, Delacey KA, Bostwick DG, Lieber MM, Thiobideau SN, Jenkins RB: Frequent loss of heterozygosity at 7q31.1 in primary prostate cancer is associated with tumor aggressiveness and progression. Cancer Res 55: 4114–4119, 1995

    Google Scholar 

  112. Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, Epstein JI, Isaacs WB: Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 87: 8751–8755, 1990

    Google Scholar 

  113. Kunimi K, Bergerheim US, Larsson IL, Ekman P, Collins VP: Allelotyping of human prostatic adenocarcinoma. Genomics 11: 530–536, 1991

    Google Scholar 

  114. Bergerheim US, Kunimi K, Collins VP, Ekman P: Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Genes Chromosom Cancer 3: 215–220, 1991

    Google Scholar 

  115. Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N, Jacobs SC, Robinson JC, Epstein JI, Walsh PC et al.: Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 53: 3869–3873, 1993

    Google Scholar 

  116. MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R: Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosom Cancer 10: 151–159, 1994

    Google Scholar 

  117. Macoska JA, Trybus TM, Sakr WA, Wolf MC, Benson PD, Powell IJ, Pontes JE: Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Cancer Res 54: 3824–3830, 1994

    Google Scholar 

  118. Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Srup SE, Duray PH: Analysis of 99 microdissected prostate carcinomas reves a high frequency of allelic loss on chromosome 8p 12–21. Cancer Res 56: 24111–24126, 1996

    Google Scholar 

  119. Emmert-Buck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, Zhuang Z, Bostwick DG, Liotta LA, Linehan WM: Allelic loss on chromosome 8p12–21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 55: 2959–2962, 1995

    Google Scholar 

  120. Trapman J, Sleddens HF, Van der Weiden MM, Dinjens WN, Konig JJ, Schroder FH, Faber PW, Bosman FT: Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res 54: 6061–6064, 1994

    Google Scholar 

  121. Brothman AR, Patel AM: Characterization of 10 marker chromosomes in a prostatic cancer cell line by in situ hybridization. Cytogenet Cell Genet 60: 8–11, 1992

    Google Scholar 

  122. Murakami YS, Albertsen H, Brothman AR, Leach RJ, White RL: Suppression of the malignant phenotype of human prostate cancer cell line PPC-1 by introduction of normal fragments of human chromosome 10. Cancer Res 56: 2157–2160, 1996

    Google Scholar 

  123. Deitch AD, De Vere White RW: Flow cytometry as a predictive modality in prostate cancer. [Review]. Hum Pathol 23: 352–359, 1992

    Google Scholar 

  124. Tribukait B: Flow cytometry in assessing the clinical aggressiveness of genito-urinary neoplasms. World J Urol 5: 108–122, 1996

    Google Scholar 

  125. Falkmer UG: Methodologic sources of errors in image and flow cytometric DNA assessments of the malignancy potential of prostatic carcinoma. [Review]. Hum Pathol 23: 360–367, 1992

    Google Scholar 

  126. Jones EC, McNeal J, Bruchovsky N, De Jong G: DNA content in prostatic adenocarcinoma. A flow cytometry study of the predictive value of aneuploidy for tumor volume, percentage Gleason grade 4 and 5, and lymph node metastases. Cancer 66: 752–757, 1990

    Google Scholar 

  127. Bos JL: Ras oncogenes in human prostate: review. Cancer Res 49: 4682–4689, 1989

    Google Scholar 

  128. Barbacid M: Ras oncogenes: their role in neoplasia. Eur J Clin Invest 20: 225–235, 1990

    Google Scholar 

  129. Peehl DM: Oncogenes in prostate cancer. An update. [Review]. Cancer 71: 1159–1164, 1993

    Google Scholar 

  130. McCormick F: Activators and effectors of ras p21 proteins. Curr Opin Genet Dev 4: 71–76, 1994

    Google Scholar 

  131. Pergolizzi RG, Kreis W, Rottach C, Susin M, Broome JD: Mutational status of codons 12 and 13 of the N-and K-ras genes in tissue and cell lines derived from primary and metastatic prostate carcinomas [see comments]. Cancer Invest 11: 25–32, 1993

    Google Scholar 

  132. Peehl DM, Wehner N, Stamey TA: Activated Ki-ras oncogene in human prostatic adenocarcinoma. Prostate 10: 281–289, 1987

    Google Scholar 

  133. Tsujii T, Yonese J, Kojima S, Tari K, Ishii M, Seino Y: [The clinical usefulness of urinary basic fetoprotein (BFP) in patients with urological malignancies]. [Japanese]. Nippon Hinyokika Gakkai Zasshi 81: 829–834, 1990

    Google Scholar 

  134. Gumerlock PH, Poonamallee UR, Meyers FJ, De Vere White RW: Activated ras alleles in human carcinoma of the prostate are rare. Cancer Res 51: 1632–1637, 1991

    Google Scholar 

  135. Konishi N, Enomoto T, Buzard G, Ohshima M, Ward JM, Rice JM: K-ras activation and ras p21 expression in latent prostatic carcinoma in Japanese men. Cancer 69: 2293–2299, 1992

    Google Scholar 

  136. Anwar K, Nakakuki K, Shiraishi T, Naiki H, Yatani R, Inuzuka M: Presence of ras oncogene mutations and human papillomavirus DNA in human prostate carcinomas. Cancer Res 52: 5991–5996, 1992

    Google Scholar 

  137. Moul, Theune SM, Chang EH: Detection of ras mutations in archival testicular germ cell tumours by polymerase chain reaction and oligonucleotide hybridization. Genes Chromosom Cancer 5: 109–118, 1992

    Google Scholar 

  138. Voeller HJ, Wilding G, Gelmann EP: v-rasH expression confers hormone-independent in vitro growth to LNCaP prostate carcinoma cells. Mol Endocrinol 5: 209–216, 1991

    Google Scholar 

  139. Treiger B, Isaacs J: Expression of a transfected v-Harveyras oncogene in a Dunning rat prostate adenocarcinoma and the development of high metastatic ability. J Urol 140: 1580–1586, 1988

    Google Scholar 

  140. Schalken JA, Ebeling SB, Isaacs JT, Treiger B, Bussemakers MJ, de Jon ME, Van de Ven WJ: Down modulation of fibronectin messenger RNA in metastasizing rat prostatic cancer cells revealed by differential hybridization analysis. Cancer Res 48: 2042–2046, 1988

    Google Scholar 

  141. Partin AW, Isaacs JT, Treiger B, Coffey DS: Early cell motility changes associated with an increase in metastatic ability in rat prostatic cancer cells transfected with the v-Harvey-ras oncogene. Cancer Res 48: 6050–6053, 1988

    Google Scholar 

  142. Carter BS, Epstein JI, Isaacs WB: Ras gene mutations in human prostate cancer. Cancer Res 50: 6830–6832, 1990

    Google Scholar 

  143. Viola MV, Fromowitz E, Oravez S, Deb S, Finkel G, Lundy J, Hand P, Thor A, Schlom J: Expression of ras oncogene p21 in prostate cancer. N Engl J Med 314: 133–137, 1986

    Google Scholar 

  144. Sumiya H, Masai M, Akimoto S, Yatani R, Shimazaki J: Histochemical examination of expression of ras p21 protein and R 1881-binding protein in human prostatic cancers. Eur J Cancer 26: 786–789, 1990

    Google Scholar 

  145. Vaima VA, Austin GE, O'Connell AC: Antibodies to ras oncogene p21 proteins lack immunohistochemical specificity for neoplastic epithelium in human prostate tissue. Arch Pathol Lab Med 113: 16–19, 1989

    Google Scholar 

  146. Bussemakers MJ, Isaacs JT, Debruyne FMJ, Van der Ven WJM, Schalken JA: Oncogene expression in prostate cancer. World J Urol 9: 58–63, 1991

    Google Scholar 

  147. Cooke DB, Quarmby VE, Petrusz P, Mickey DD, Der CJ, Isaacs JT, French FS: Expression of ras proto-oncogenes in the Dunning R3327 rat prostatic adenocarcinoma system. Prostate 13: 273–287, 1988

    Google Scholar 

  148. Kato GJ, Barret J, Villa Garcia M, Dang C: An amino terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 10: 5914–5920, 1990

    Google Scholar 

  149. Escort C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest M, Callahan R: Genetic alterations of the c-myc proto-oncogene in human primary breast carcinoma. Proc Natl Acad Sci USA 83: 4834, 1986

    Google Scholar 

  150. Fleming WH, Hamel A, MacDonald R, Ramsey E, Pettigrew NM, Johnston B, Dodd JG, Matusik RJ: Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyporplasia. Cancer Res 46: 1535–1538, 1986

    Google Scholar 

  151. Phillips ME, Ferro MA, Smith PJ, Davies P: Intranuclear androgen receptor deployment and protooncogene expression in human diseased prostate. Urol Int 42: 115–119, 1987

    Google Scholar 

  152. Buttyan R, Sawczuk IS, Benson MC, Siegal JD, Olsson CA: Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate 11: 327–337, 1987

    Google Scholar 

  153. Cooke DB, Quarmby VE, Mickey DD, Isaacs JT, French FS: Oncogene expression in prostate cancer: Dunning R3327 rat dorsal prostatic adenocarcinoma system. Prostate 13: 263–272, 1988

    Google Scholar 

  154. Eaton CL, Davies P, Phillips ME: Growth factor involvement and oncogene expression in prostatic tumours. J Steroid Biochem 30: 341–345, 1988

    Google Scholar 

  155. Matusik RJ, Fleming WH, Hamel A, Westenbrink TG, Hrabarchuk B, MacDonald R, Ramsey E, Gartner JG, Pettigrew NM, Johnston B et al.: Expression of the c-myc proto-oncogene in prostatic tissue. [Review]. Prog Clin Biol Res 239: 91–112, 1987

    Google Scholar 

  156. Funa K, Nordgren H, Nilsson S: In situ expression of mRNA for proto-oncogenes in benign prostatic hyperplasia and in prostatic carcinoma. Scand J Urol Nephrol 25: 95–100, 1991

    Google Scholar 

  157. Thompson TC, Southgate J, Kitchener G, Land H: Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56: 917–930, 1989

    Google Scholar 

  158. Carter HB, Piantadosi S, Isaacs JT: Clinical evidence for an implications of the multistep development of prostate cancer. J Urol 143: 742–746, 1990

    Google Scholar 

  159. Hynes NE, Gerber HA, Saurer S, Groner B: Overexpression of the c-erbB-2 protein in human breast tumor cell lines. J Cell Biochem 39: 167–173, 1989

    Google Scholar 

  160. King CR, Kraus MH, Aaronson SA: Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229: 974–976, 1985

    Google Scholar 

  161. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987

    Google Scholar 

  162. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al.: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712, 1989

    Google Scholar 

  163. Zhau HE, Wan DS, Zhou J, Miller GJ, von Eschenbach AC: Expression of c-erb B-2/neu proto-oncogene in human prostatic cancer tissues and cell lines. Mol Carcinog 5: 320–327, 1992

    Google Scholar 

  164. Ware JL, Maygarden SJ, Koontz WW Jr, Strom SC: Immunohistochenmical detection of c-erbB-2 protein in human benign and neoplastic prostate. Hum Pathol 22: 254–258, 1991

    Google Scholar 

  165. Mellon K, Thompson S, Charlton RG, Marsh C, Robinson M, Lane DP, Harris AL, Horne CH, Neal DE: p53, c-erbB-2 and the epidermal growth factor receptor in the benign and malignant prostate. J Urol 147: 496–499, 1992

    Google Scholar 

  166. Visakorpi T, Kallioniemi OP, Koivula T, Harvey J, Isola J: Expression of epidermal growth factor receptor and ERBB2 (HER-2/Neu) oncoprotein in prostatic carcinomas. Mod Pathol 5: 643–648, 1992

    Google Scholar 

  167. Sadasivan R, Morgan R, Jennings S, Austenfeld M, Van Veldhuizen P, Stephens R, Noble M: Overexpression of Her-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 150: 126–131, 1993

    Google Scholar 

  168. Kuhn EJ, Kurnot RA, Sesterhenn IA, Chang EH, Moul JW: Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. [Review]. J Urol 150: 1427–1433, 1993

    Google Scholar 

  169. Klotz LH, Auger M, Andrulis I, Srigley J: Molecular analysis of neu, sis, c-myc, fos, and P53 oncogenes in benign prostatic hypertrophy and prostatic carcinoma. J Urol 143: 401A, 1990

    Google Scholar 

  170. Grob MB, Schellhammer PF, Wright GL et al.: Expression of the c-erbB2 oncogene in human prostatic carcinoma. J Urol 145: 294A, 1991

    Google Scholar 

  171. Smith RG, Nag AL: Regulation of c-sis expression in tumors of the male reproductive tract. [Review]. Prog Clin Biol Res 239: 113–122, 1987

    Google Scholar 

  172. Rijnders AW, Van der Korput JA, Van Steenbrugge GJ, Romijn JC, Trapman J: Expression of cellular oncogenes in human prostatic carcinoma cell lines Biochem Biophys Res Commun 132: 548–554, 1985

    Google Scholar 

  173. Davies P, Eaton CL, France TD, Phillips ME: Growth factor receptors and oncogene expression in prostate cells. [Review]. Am J Clin Oncol 11Suppl 2: S1–7, 1988

    Google Scholar 

  174. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis CJ, Chung LK, Hsieh JT: Bel-2 expression in androgen-independent prostate carcinoma. J Urol 149: 221A, 1993

    Google Scholar 

  175. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R: Overexpression of bel-z protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55: 4438–4445, 1995

    Google Scholar 

  176. Fearon ER, Vogelstein BA: A genetic model for colorectal tumorigenesis. Cell 61: 759–769, 1990

    Google Scholar 

  177. Seemayer TA, Cavenee WK: Biology of disease: molecular mechanisms of oncogenesis. Lab Invest 60: 585–599, 1989

    Google Scholar 

  178. Marshall CJ: Tumor suppressor genes. Cell 64: 313–326, 1991

    Google Scholar 

  179. Weinberg RA: Tumor suppressor genes. Science 254: 249–270, 1991

    Google Scholar 

  180. Romas NA, Kwan DJ: Prostatic acid phosphatase. Biomolecular features and assays for serum determination. [Review]. Urol Clin North Am 20: 581–588, 1993

    Google Scholar 

  181. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P et al.: Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708, 1989

    Google Scholar 

  182. Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. [Review]. Science 253: 49–53, 1991

    Google Scholar 

  183. Malkin D, Li FP, Strong LC, Fraumeni J Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250: 1233–1238, 1990

    Google Scholar 

  184. Frebourg T, Friend SH: Cancer risks from germ-line p53 mutations. J Clin Invest 90: 1637–1641, 1992

    Google Scholar 

  185. Friend SH, Horowitz JM, Gerber MR, Wang XF, Bogenmann E, Li FP, Weinberg RA: Deletions of a DNA sequence in retinoblastomas and mesenchymal inmors organization of the sequence and its encoded protein [publied erratum appears in Proc Natl Acad Sci USA 1988 Apr; 85 (7): 2234]. Proc Natl Acad Sci USA 84: 9059–9063, 1987

    Google Scholar 

  186. Mendoza AE, Shew JY, Lee EY, Bookstein R, Lee WH: A case of synovial sarcoma with abnormal expression of the human retinoblastoma susceptibility gene. Hum Pathol 19: 487–489, 1988

    Google Scholar 

  187. Harbour JW, Lai SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ: Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241: 353–357, 1988

    Google Scholar 

  188. T'Ang A, Varley JM, Chakraborty S, Murphree AL, Fung YK: Structural rearrangement of the retinoblastoma gene in human breast carcinoma., Science 242: 263–266, 1988

    Google Scholar 

  189. Yokota J, Akiyama T, Fung YK, Benediet WF, Namba Y, Hanaoka M, Wada M, Terasaki T, Shimosato Y, Sugimura T et al.: Altered expression of the retinoblastoma (RB) gene in small-cell carcinoma of the lung. Oncogene 3: 471–475, 1988

    Google Scholar 

  190. Varley JM, Armour J, Swallow JE, Jeffreys AJ, Ponder BA, T'Ang A, Fung YK, Brammar WJ, Walker RA: The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours [published erratum appears in Oncogene 1990 Feb: 5 (2): 245]. Oncogene 4: 725–729, 1989

    Google Scholar 

  191. Bookstein R, Shew JY, Chen PL, Scully P, Lee WH: Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247: 712–715, 1990

    Google Scholar 

  192. Bookstein R, Rio P, Madreperla SA, Hong F, Allred C, Grizzle WE, Lee WH: Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 87: 7762–7766, 1990

    Google Scholar 

  193. Brooks JD, Bova GS, Isaacs WB: Allelic loss of the retinoblastoma gene in primary human prostatic adenocarci nomas. Prostate 26: 35–39, 1995

    Google Scholar 

  194. Donehower LA, Bradeley A: The tumor suppressor gene p53, Biochim Biophys Acta 1155: 181–205, 1993

    Google Scholar 

  195. Levine AJ: The TSGs. Ann Rev Biochem 621: 623–651, 1993

    Google Scholar 

  196. Harris CC, Hollstein M: Clinical implications of the p53 tumor-suppressor gene [see comments]. [Review]. N Engl J Med 329: 1318–1327, 1993

    Google Scholar 

  197. Takahashi T, Suzuki H, Hida T, Sekido Y, Ariyoshi Y, Ueda R: The p53 gene is very frequently mutated in small-cell lung cancer with a distinet nucleotide substitution pattern. Oncogene 6: 1775–1778, 1991

    Google Scholar 

  198. Sidransky D, von Eschenbach A, Tsai YC, Jones P, Summerhayes I, Marshall F, Paul M, Green P, Hamilton SR, Frost P et al.: Identification of p53 gene mutations in bladder cancers and urine samples. Science 252: 706–709, 1991

    Google Scholar 

  199. Visakorpi T, Kallioniemi OP, Heikkinen A, Koivula T, Isola J: Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 84: 883–887, 1992

    Google Scholar 

  200. Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC: p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 53: 3369–3373, 1993

    Google Scholar 

  201. Dinjens WN, Van der Weiden MM, Schroeder FH, Bosman FT, Trapman J: Frequency and characterization of p53 mutations in primary and metastatic human prostate cancer. Int J Cancer 56: 630–633, 1994

    Google Scholar 

  202. Voeller HJ, Sugars LY, Pretlow T, Gelmann EP: p53 oncogene mutations in human prostate cancer specimens. J Urol 151: 492–495, 1994

    Google Scholar 

  203. Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, von Eschenbach AC, Conti CJ: p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85: 1657–1669, 1993

    Google Scholar 

  204. Effert PJ, McCoy RH, Walther PJ, Liu ET: p53 gene alterations in human prostate carcinoma. J Urol 150: 257–261, 1993

    Google Scholar 

  205. Aprikian AG, Sarkis AS, Fair WR, Zhang ZF, Fuks Z, Cordon-Cardo C: Immunohistochemical determination of p53 protein nuclear accumulation in prostatic adenocarcinoma. J Urol 151: 1276–1280, 1994

    Google Scholar 

  206. Evans RM: The steroid and thyroid hormone receptor superfamily. Science 240: 889–895, 1988

    Google Scholar 

  207. Brinkmann AO, Kuiper GG, Ris-Stalpers C, Van Rooij HC, Romalo G, Trifiro M, Mulder E, Pinsky L, Schweikert HU, Trapman J: Androgen receptor abnormalities. [Review]. J Steroid Biochem Mol Biol 40: 349–352, 1991

    Google Scholar 

  208. Faber PW, Van Rooij HCJ, Schipper HP, Brinkmann AO, Trapman J: Two different, overlapping pathways of transcription initiation are active on the TAT-less human androgen receptor promoter. J Biol Chem 268: 9296–9301, 1993

    Google Scholar 

  209. Rundlett SE, Wu XP, Miesfeld RL: Functional characterizations of the androgen receptor confirm that the molecular basis of androgen action is transcriptional regulation. Mol Endocrinol 4: 708–714, 1990

    Google Scholar 

  210. Jenster G, Van der Korput HA, Van Vroonhoven C, Van der Kwast TH, Trapman J, Brinkmann AO: Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization, Mol Endocrinol 5: 1396–1404, 1991

    Google Scholar 

  211. Luisi BF, Xu WX, Otwinowski Z, Feedman LP, Yamamoto KR, Sigler PB: Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA Nature 352: 497–505, 1991

    Google Scholar 

  212. Picard D, Kumar V, Chambon P, Yamamoto KR: Signal transduction by steroid hormones: nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regul 1: 291–299, 1990

    Google Scholar 

  213. Tilley WD, Wilson CM, Marcelli M, McPhaul MJ: Androgen receptor gene expression in human prostate carcinoma cell lines. Cancer Res 50: 5382–5386, 1990

    Google Scholar 

  214. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R. Palmberg C, Palotie A, Tammela T, Isola J, Kallioniemi OP: In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–406, 1995

    Google Scholar 

  215. Klocker H, Culig Z, Kaspar F, Hobisch A, Eberle J, Reissigl A, Bartsch G: Androgen signal transduction and prostatic carcinoma. [Review]. World J Urol 12: 99–103, 1994

    Google Scholar 

  216. Barrack ER, Bujnovsky P, Walsh PC: Subcellular distribution of androgen receptors in benign hyperplastic and malignant prostatic tissues: characterisation of salt resistant receptors. Cancer Res 43: 1107–1116, 1983

    Google Scholar 

  217. Kyprianou N, Davies P: Association states of androgen receptor nuclei of human benign hypertrophic prostate. Prostate 8: 363–380, 1986

    Google Scholar 

  218. Ekman P, Brolin J: Steroid receptor profile in human prostate cancer metastases as compared with primary prostatic carcinoma. Prostate 18: 147–153, 1991

    Google Scholar 

  219. Masai M, Sumiya H, Akimoto S, Yatani R, Chang CS, Liao SS, Shimazaki J: Immunohistochemical study of androgen receptor in benign hyperplastic and cancerous human prostates. Prostate 17: 293–300, 1990

    Google Scholar 

  220. Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Shimazaki J: Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 46: 759–765, 1993

    Google Scholar 

  221. Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, Brown TR, Barrack ER: Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 89: 6319–6323, 1992

    Google Scholar 

  222. Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW, Srivastava S: Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res 54: 2861–2864, 1994

    Google Scholar 

  223. Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R: Genetic variation of five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12: 241–253, 1992

    Google Scholar 

  224. Sloddens HF, Oostra BA, Brinkmann AO et al.: Tyrinucleotide (GGN) repeat polymorphism in the human androgen receptor. Hum Mol Genet 2: 273, 1993

    Google Scholar 

  225. Chamberlin NL, Driver ED, Miesfield RL: The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain effect transactivation function. Nucleic Acids Res 22: 3181–3186, 1994

    Google Scholar 

  226. Irvine RA, Yu MC, Ross RK, Coetzee GA: The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 55: 1937–1940, 1995

    Google Scholar 

  227. Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, Isaacs WB, Walsh PC, Barrack ER: Microsatellite mutation (CAG24→18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 198: 74–80, 1994

    Google Scholar 

  228. Byrne RL, Leung H, Neal DE: Peptide growth factors in the prostate as mediators of stromal epithelial interactions. Br J Urol 77: 627–633, 1996

    Google Scholar 

  229. Norgaard P, Hougaard S, Poulsen HS, Spang-Thomsen M: Transforming growth factor beta and cancer. [Review], Cancer Treat Rev 21: 367–403, 1995

    Google Scholar 

  230. Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Sensibar JA, Kim JH, Kato M, Lee C: Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Res 56: 44–48, 1996

    Google Scholar 

  231. Goldstein D, O'Leary M, Mitchen J, Borden EC, Wilding G: Effects of interferon beta ser and transforming growth factor beta on prostatic cell ines. J Urol 146: 1173–1177, 1991

    Google Scholar 

  232. Zentella A, Weis FM, Ralph DA, Laiho M, Massague J: Early gene responses to transforming growth factor-beta in cells lacking growth-suppressive RB function. Mol Cell Biol 11: 4952–4958, 1991

    Google Scholar 

  233. Truong LD, Kadmon D, McCune BK, Flanders KC, Scardino PT, Thompson TC: Association of transforming growth factor-beta 1 with prostate cancer: an immunohistochemical study. Hum Pathol 24: 4–9, 1993

    Google Scholar 

  234. Ivanovic V, Mclman A, Davis-Joseph B, Valcic M, Geliebter J: Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer [letter]. Nature Med 1: 282–284, 1995

    Google Scholar 

  235. Morton DM, Barrack ER: Modulation of transforming growth factor beta 1 effects on prostate cancer cell proliferation by growth factors and extracellular matrix. Cancer Res 55: 2596–2602, 1995

    Google Scholar 

  236. Steiner MS, Barrack ER: Transforming growth factor-beta 1 overproduction in prostate cancer effects on growth in vivo and in vitro. Mol Endocrinol 6: 15–25, 1992

    Google Scholar 

  237. Wilding G, Zugmeier G, Knabbe C, Flanders K, Gelmann E: Differential effects of transforming growth factor beta on human prostate cancer cells in vitro. Mol Cell Endocrinol 62: 79–87, 1989

    Google Scholar 

  238. Desruisseau, Ghazarossian Ragni E, Chinot O, Martin PM: Divergent effect of TGFbetal on growth and proteolytic modulation of human prostatic cancer cell lines. Intern J Cancer 66: 796–801, 1996

    Google Scholar 

  239. Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ: Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res 56: 1142–1145, 1996

    Google Scholar 

  240. Lloyd SN, Brown LL, Leake RE: Transforming growth factor-alpha expression in benign and malignant human prostatic discase. Int J Biol Markers 7: 27–34, 1992

    Google Scholar 

  241. Ching KZ, Ramsey E, Pettigrew N, D'Cunha R, Jason M, Dodd JG: Expression of mRNA for cpidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol Cell Biochem 126: 151–158, 1993

    Google Scholar 

  242. Morris GL, Dodd JG: Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J Urol 143: 1272–1274, 1990

    Google Scholar 

  243. Fox SB, Persad RA, Colcman N, Day CA, Silcocks PB, Collins CC: Prognostic value of c-crbB-2 and epidermal growth factor receptor in stage Al (Tla) prostatic adenocarcinoma. Br J Urol 74: 214–220, 1994

    Google Scholar 

  244. Connolly JM, Rose DP: Secretion of epidermal growth factor and related polypeptides by the DU 145 human prostate cancer cell line. Prostate 15: 177–186, 1989

    Google Scholar 

  245. Connolly JM, Rose DP: Autocrine regulation of DU145 human prostate cancer cell growth by epidermal growth factor-related polypeptides. Prostate 19: 173–180, 1991

    Google Scholar 

  246. Hofer DR, Sherwood ER, Bromberg WD, Mendelsohn J, Lee C, Kozlowski JM: Autonomous growth of androgenindependent human prostatic carcinoma cells: role of transforming growth factor alpha. Cancer Res 51: 2780–2785, 1991

    Google Scholar 

  247. Connolly JM, Rose DP: Production of epidermal growth factor and transforming growth factor-alpha by the androgen-responsive LNCaP human prostate cancer cell line. Prostate 16: 209–218, 1990

    Google Scholar 

  248. Liu XH, Wiley HS, Meikle AW: Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF)/TGF-alpha receptor. J Clin Endocrinol Metah 77: 1472–1478, 1993

    Google Scholar 

  249. Schuurmans AL, Bolt J, Mulder E: Androgens stimulate both growth rate and epidermal growth factor receptor activity of the human prostate tumor cell LNCaP. Prostate 12: 55–63, 1988

    Google Scholar 

  250. Brass AL, Barnard J, Patai BL, Salvi D, Rukstalis DB: Androgen up-regulates epidermal growth factor receptor expression and binding affinity in PC3 cell lines expressing the human androgen receptor. Cancer Res 55: 3197–3203, 1995

    Google Scholar 

  251. Xie H, Turner T, Wang MH, Singh RK, Siegal GP, Wells A: In vitro invasiveness of DU-145 human prostate carcinoma cells is modelated by EGF receptor-mediated signals. Clin Exp Metastasis 13: 407–419, 1995

    Google Scholar 

  252. Liu DF, Rabbani SA: Induction of urinary plasminogen activator by retinoic acid results in increased invasiveness of human prostate cancer cells PC-3. Prostate 27: 269–276, 1995

    Google Scholar 

  253. Jarrard DF, Blitz BF, Smith RC, Patai BL, Rukstalis DB: Effect of epidermal growth factor on prostate cancer cell line PC3 growth and invasion. Prostate 24: 46–53, 1994

    Google Scholar 

  254. Pinski J, Reile H, Halmos G, Groot K, Schally AV: Inhibitory effects of somatostatin analogue RC-160 and bombesin/gastrin-releasing peptide antagonist RC-3095 on the growth of the androgen independent Dunning R-3327-AT-1 rat prostate cancer. Cancer Res 54: 169–174, 1994

    Google Scholar 

  255. Pinski J, Reile H, Halmos G, Groot K, Schally AV: Inhibitory effects of analogs of utcinizing hormone-releasing hormone on the growth of the androgen-independent Dunning R-3327-AT-1 rat prostate cancer. Int J Cancer 59: 51–55, 1994

    Google Scholar 

  256. Kim JH, Sherwood ER. Sutkowski DM, Lee C, Kozlowski JM: Inhibition of prostatic tumor cell proliferation by suramin: alterations in TGF alpha-mediated autocrine growth regulation and cell cycle distribution. J Urol 146: 171–176, 1991

    Google Scholar 

  257. Cohen P, Pechl DM, Rosenfeld RG: The IGF axis in the prostate, [Review]. Horm Metab Res 26: 81–84, 1994

    Google Scholar 

  258. Kaicer EK, Blat C, Harel L: IGF-I and IGF-binding proteins: stimulatory and inhibitory factors secreted by human prostatic adenocarcinoma cells. Growth Factors 4: 231–237, 1991

    Google Scholar 

  259. Iwamura M, Sluss PM, Casamento JB, Cockett AT: Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines. Prostate 22: 243–252. 1993

    Google Scholar 

  260. Pietrzkowski Z, Mudholland G, Gomella L, Jameson BA, Wernicke D, Baserga R: Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor 1. Cancer Res 53: 1102–1106, 1993

    Google Scholar 

  261. Polychronakos C, Janthly U, Lehoux JF, Koutsilieris M: Mitogenic effects of insulin and insulin-like growth factors on PA-III rat prostate adenocarcinoma cells:characterization of the receptors involved. Prostate 19: 313–321, 1991

    Google Scholar 

  262. Culig Z, Hobich A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H: Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–5478, 1994

    Google Scholar 

  263. Koutsilieris M, Polychronakos C: Proteinolytic activity against IGF-binding proteins involved in the paracrine interactions between prostate adenocarcinoma cells and os teoblasts. Anticancer Res 12: 905–910, 1992

    Google Scholar 

  264. Janssen T, Kiss R, Dedecker R, Petein M, Pasteels JL, Schulman C: Influence of dihydrotestosterone, epidermal growth factor, and basic fibroblast growth factor on the cell kinetics of the PC3, DU145, and LNCaP prostatic cancer cell lines: relationship with DNA ploidy level. Prostate 27: 277–286, 1995

    Google Scholar 

  265. Gleave ME, Hsieh JT, von Eschenbach AC, Chung LW: Prostate and bone fibroblasts induce human prostate cancer growth in vivo: implications for bidirectional tumorstromal cell interaction in prostate carcinoma growth and metastasis. J Urol 147: 1151–1159, 1992

    Google Scholar 

  266. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW: Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med 1: 944–949, 1995

    Google Scholar 

  267. Nelson JB, Chan-Tack K, Hedican SP, Magnuson SR, Opgenorth TH, Bova GS, Simons JW: Endothelin-1 production and decreased endothin B receptor expression in advanced prostate cancer. Cancer Res 56: 663–668. 1996

    Google Scholar 

  268. Kobayashi S, Tang R, Wang B, Opgenorth T, Stein E, Shapiro E, Lepor H: Localization of endothelin receptors in the human prostate. J Urol 151: 763–766, 1994

    Google Scholar 

  269. Warner TD, de Nucci G, Vane JR: Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol 159: 325–326, 1989

    Google Scholar 

  270. Hirata Y, Emori T, Eguchi S, Kanno K, Imai T, Ohta K, Marumo F: Endothelin receptor subtype B mediates the synthesis of nitric oxide by bovine endothelial cells. J Clin Invest 91: 1367–1373, 1993

    Google Scholar 

  271. Kitasjima I, Kawahara K, Nakajima T, Sockima Y, Matsuyama T, Marnyama I: Nitric oxide-mediated apoptosis in mastocytoma. Biochem Biophys Res Commun 203: 244–251, 1994

    Google Scholar 

  272. Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, Fidler IJ: Transfection with the inducible nitric oxide synthase gene suppresses the tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 181: 1333–1343, 1995

    Google Scholar 

  273. Goligorsky MS, Tsukahara H, Magazine H, Anderson TT, Malik AB, Bahou WF: Termination of endothelin signalling: role of nitric oxide. J Cell Physiol 158: 485–494, 1994

    Google Scholar 

  274. Boulanger C, Luscher TF: Release of endothelin from the porcine aorta: inhibition by endothelin-derived nitric oxide. J Clin Invest 85: 587–590, 1990

    Google Scholar 

  275. Graham CW, Lynch JH, Djakiew D: Distribution of nerve growth factor-like protein and nerve growth factor receptor in human benign prostatic hyperplasia and prostatic adenocarcinoma. J Urol 147: 1444–1447, 1992

    Google Scholar 

  276. Djakiew D, Pflug B, Onoda M: Stromal-epithelial paracrine interactions in the neoplastic rat and human prostate. Adv Exp Med Biol 330: 185–202, 1993

    Google Scholar 

  277. Djakiew D, Delsite R, Pflug B, Wrathall J, Lynch JH, Onoda M: Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoptastic epithelial cell line and stromal cells of the human prostate. Cancer Res 51: 3304–3310, 1991

    Google Scholar 

  278. Djakiew D, Pflug BR, Delsite R, Onoda M, Lynch JH, Arand G, Thompson EW: Chemotaxis and chemokinesis of human prostate tumor cell lines in response to human prostate stromal cell secretory proteins containing a nerve growth factor-like protein. Cancer Res 53: 1416–1420, 1993

    Google Scholar 

  279. Yang G, Wheeler TM, Kattan MW, Scardino PT, Thompson TC: Perincural invasion of prostate carcinoma cells is associated with reduced apoptotic index. Cancer 78: 1267–1271, 1996

    Google Scholar 

  280. Horigome K, Bullock ED, Johnson EM Jr: Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J Biol Chem 269: 2695–2702, 1994

    Google Scholar 

  281. Smith RC, Litwin MS, Lu Y, Zetter BR: Identification of an endogenous inhibitor of prostatic carcinoma cell growth. Nature Med 1: 1040–1044, 1996

    Google Scholar 

  282. Cipolla BG. Ziade J. Bansard JY, Moulinoux JP, Stacrman F, Quemener V, Lobel B, Guille F: Pretherapeutic erythrocyte polyamine spermine levels discriminate high risk relapsing patients with MI prostate carcinoma. Cancer 78: 1055–1065, 1996

    Google Scholar 

  283. Costello LC, Franklin RB: Effect of prolactin on the prostate. [Review]. Prostate 24: 162–166, 1994

    Google Scholar 

  284. Janssen T, Darro F, Petein M, Raviv G, Pasteels JL, Kiss R, Schulman CC: In vitro characterization of prolactin-induced effects on proliferation in the neoplastic LNCaP, DU145 and PC3 models of the human prostate. Cancer 77: 144–149, 1996

    Google Scholar 

  285. Rana A, Habib FK, Halliday P, Ross M, Wild R, Elton RA, Chisholm GD: A case for synchronous reduction of testicular androgen, adrenal androgen and prolactin for the treatment of advanced carcinoma of the prostate [see comments]. Eur J Cancer 31A: 871–875, 1995

    Google Scholar 

  286. Heino J: Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation. Int J Cancer 65: 717–722, 1996

    Google Scholar 

  287. Jewell K, Kapron-Bras C, Jeevaratnam P, Dedhar S: Stimulation of tyrosine phosphorylation of distinct proteins in response to antibody-mediated ligation and clustering of alpha 3 and alpha 6 integrins. J Cell Sci 108: 1165–1174, 1995

    Google Scholar 

  288. Knox JD, Cress AE, Clark V, Manriquez L, Affinito KS, Dalkin BL, Nagle RB: Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate. Am J Pathol 145: 167–174, 1994

    Google Scholar 

  289. Nagle RB, Knox JD, Wolt C, Bowden GT, Cress AE: Adhesion molecules, extraccllular matrix, and proteases in prostate carcinoma. J Cell Biochem Suppl 19: 232–237, 1994

    Google Scholar 

  290. Cress AE, Rabinovitz I, Zhu W, Nagle RB: The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev 14: 219–228, 1995

    Google Scholar 

  291. Cress AE, Rabinovitz I, Zhu W, Nagle RB: The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. [Review]. Cancer Metastasis Rev 14: 219–228, 1995

    Google Scholar 

  292. Nagle RB, Hao J, Knox JD, Dalkin BL, Clark V, Cress AE: Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol 146: 1498–1507, 1995

    Google Scholar 

  293. Rabinovitz I, Nagle RB, Cress AE: Integrin alpha 6 expression in human prostate carcinoma cells is associated with a migratory and invasive phenotype in vitro and in vivo. Clin Exp Metastasis 13: 481–491, 1995

    Google Scholar 

  294. Dedhar S, Saulnier R, Nagle R, Overall CM: Specific alterations in the expression of alpha 3 beta 1 and alpha 6 beta 4 integrins in highly invasive and metastatic variants of human prostate carcinoma cells selected by in vitro invasion through reconstituted basement membrane. Clin Exp Metastasis 11: 391–400, 1993

    Google Scholar 

  295. Coppolino M, Migliorini M, Argraves WS, Dedhar S: Identification of a novel form of the alpha 3 integrin subunit: covalent association with transferrin receptor. Biochem J 306: 129–134, 1995

    Google Scholar 

  296. Rossi MC, Zetter BR. Selective stimulation of prostatic carcinoma cell proliferation by transferrin. Proc Natl Acad Sci USA 89: 6197–7201, 1992

    Google Scholar 

  297. Sokoloff MH, Tso CL, Kaboo R, Taneja S, Pang S, de Kernion JB, Belldegrun AS: In vitro modulation of tumor progression-associated properties of hormone refractory prostate carcinoma cell lines by cytokines. Cancer 77: 1862–1872, 1996

    Google Scholar 

  298. Witkowski CM, Rabinovitz I, Nagle RB, Affinito KS, Cress AE: Characterization of integrin subunits, cellular adhesion and tumorgenicity of four human prostate cell lines, J Cancer Res Clin Oncol 119: 637–644, 1993

    Google Scholar 

  299. Paul R, Jarrard DF, Bussemakers MJ, Nguyen SH, Bova GS, Schalken JA, Isaacs WB: Loss of P-cadherin expression in prostate cancer. Eur Urol 30(52), 1996 (Abstract)

  300. Isaacs WB, Bova GS, Morton RA, Busscmakers MJ, Brooks JD, Ewing CM: Genetic alterations in prostate cancer. [Review]. Cold Spring Harb Symp Quant Biol 59: 653–659, 1994

    Google Scholar 

  301. Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, Schaafsma HE, Debruyne FM, Isaaes WB: Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res 52: 5104–5109, 1992

    Google Scholar 

  302. Cheng L, Nagabhushan M, Pretlow TP, Amini SB, Pretlow TG: Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol 148: 1375–1380, 1996

    Google Scholar 

  303. Ross JS, Figge HL, Bui HX, del Rosario AD, Fisher HA, Nazeer T, Jennings TA, Ingle R, Kim DN: F-cadherin expression in prostatic carcinoma biopsies: correlation with tumor grade. DNA content pathologic stage, and clinical outcome. Mod Pathol 7: 835–841, 1994

    Google Scholar 

  304. Giroldi LA, Schalken JA: Decreased expression of the intercellular adhesion molecule E-cadherin in prostate cancer: biological significance and clinical implications. Cancer Metastasis Rev 12: 29–37, 1993

    Google Scholar 

  305. Umbas R, Isaac WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oostcrhof GO, Debruync FM, Schalken JA: Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54: 3929–3933, 1994

    Google Scholar 

  306. Bussemakers MJ, Van Moorselaar RJ, Giroldi LA, Ichikawa T, Isaaes JT, Takeichi M, Debruyne FM, Schalken JA: Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 52: 2916–2922, 1992

    Google Scholar 

  307. Giroldi LA, Schalken JA: Decreased expression of the intercellular adhesion molecule E-cadherin in prostate cancer: biological significance and clinical implications. [Review], Cancer Metastasis Rev 12:29–37, 1993

    Google Scholar 

  308. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NF, Baylin SB: E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55: 5195–5199, 1995

    Google Scholar 

  309. Schalken JA, Smit F, Bringuier PP, van Bokhoven A, Debruyne FM, Bussemakers MJ: The role of E-cadherin mutations in bladder and prostate cancer, is E-cadherin a classical suppressor gene? J Urol 155: 339A, 1996

    Google Scholar 

  310. Ewing CM, Ru N, Morton RA, Robinson JC, Wheelock MJ, Johnson KR, Barrett JC, Isaacs WB: Chromosome 5 suppresses tumorigenicity of PC3 prostate cancer cells: correlation with re-expression of alpha-catenin and restoration of E-cadherin function. Cancer Res 55: 4813–4817, 1995

    Google Scholar 

  311. Birchmeier W, Behrens J: Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1109: 11–26, 1994

    Google Scholar 

  312. Hulsken J, Birchmeier W, Behrens J: E-cadherin and APC compete for the intraction with beta catenin and the cytoskeleton. J Cell Biol 127: 2061–2069, 1994

    Google Scholar 

  313. Carruba G, Miceli D, D'Amico D, Farruggio R, Comito L, Montesanti A, Polito L, Castagnetta LA: Sex steroids upregulate E-cadherin expression in hormone-responsive LNCaP human prostate cancer cells. Biochem Biophys Res Commun 212: 624–631, 1995

    Google Scholar 

  314. Prall F, Nollau P, Neumaier M, Haubeck HD, Drzeniek Z, Helmchen U, Loning T, Wagener C: CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and mycloid cells in a wide range of normal human tissues. J Histochem Cytochem 44: 35–41, 1996

    Google Scholar 

  315. Hsich JT, Lin SH: Androgen regulation of cell adhesion molecule gene expression in rat prostate during organ degeneration. C-CAM belongs to a class of androgen-repressed genes associated with enriched stem/amplifying cell population after prolonged castration. J Biol Chem 269: 3711–3716, 1994

    Google Scholar 

  316. Kleinerman DI, Troncoso P, Lin SH, Pisters LL, Sherwood ER, Brooks T, von Eschenbach AC, Hsieh JT: Consistent expression of an epithelial cell adhesion molecule (C-CAM) during human prostate development and loss of expression in prostate cancer: implication as a tumor suppressor. Cancer Res 55: 1215–1220, 1995

    Google Scholar 

  317. Lin SH, Luo W, Earley K, Cheung P, Hixson DC: Structure and Iunction of C-CAMI: effects of the cytoplasmic domain on cell aggregation. Biochem J 311: 239–245, 1995

    Google Scholar 

  318. Hsich J-T, Luo W, Song W, Wang Y, Kleinerman DI, Van NT, Lin SH: Tumour suppressive role of an androgen-regulated epithelial cell adhesion molecule (C-CAM) in prostate carcinoma cell revealed by sense and antisense approaches. Cancer Res 55: 190–197, 1995

    Google Scholar 

  319. Kleinerman DI, Zhang WW, Lin SH, Nguyen TV, von Eschenbach AC, Hsieh JT: Application of a tumor suppressor (C-CAM1)-expressing recombinant adenovirus in androgen-independent human prostate cancer therapy: a preclinical study. Cancer Res 55: 2831–2836, 1995

    Google Scholar 

  320. Wolff JM, Stephenson RN, Chisholm GD, Habib FK: Levels of circulating intercellular adhesion molecule-1 in patients with metastatic cancer of the prostate and benign prostatic hyperplasia. Eur J Cancer 31A: 339–341, 1995

    Google Scholar 

  321. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1: 27–31, 1995

    Google Scholar 

  322. Lokeshwar VB, Lokeshwar BL, Pham HT, Block NL: Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res 56: 651–657, 1996

    Google Scholar 

  323. Folkman J, Hanahan D: Switch to the angiogenic phenotype during tumorigenesis, [Review]. Princess Takamatsu Symp 22: 339–347, 1991

    Google Scholar 

  324. Holmgren L, O'Reilly MS, Folkman J: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med 1: 149–153, 1995

    Google Scholar 

  325. Brown LF, Yeo KT, Berse B, Morgentaler A, Dvorak, HF, Rosen S: Vascular permeability factor (vascular endothelial growth factor) is strongly expressed in the normal male genital tract and is present in substantial quantities in semen. J Urol 154: 576–579, 1995

    Google Scholar 

  326. Moon SY, Yoon JH, Moon WC, Seo KK, Ki YJ: Role of angiogenesis and vascular endothelial growth factor in glandular hyperplasia of rat ventral prostate. J Urol 155(Suppl): 463A, 1996

    Google Scholar 

  327. Bertrand N, Jonea F, Moro F, Soedrello S, Malavaud B, Cussenot O, Rischman P, Sarramon JP, Toulouse JP: In vitro regulation of VEGF expression in epithelial prostatic cells by testosterone. J Urol 155(Suppl): 603A, 1996

    Google Scholar 

  328. Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsbrun M: Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res 55: 4140–4145, 1995

    Google Scholar 

  329. Vukanovic J, Isaacs JT: Linomide inhibits angiogenesis, growth, metastasis, and macrophage infiltration within rat prostatic cancers. Cancer Res 55: 1499–1504, 1995

    Google Scholar 

  330. Chen C, Parangi S, Tolentino MJ, Folkman J: A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 55: 4230–4233, 1995

    Google Scholar 

  331. Vukanovic J, Hartley-Asp B, Isaacs JT: Inhibition of tumor angiogenesis and the therapeutic ability of linomide against rat prostatic cancers. Prostate 26: 235–246, 1995

    Google Scholar 

  332. Vukanovic J, Passaniti A, Hirata T, Traystman RJ, Hartley-Asp B, Isaacs JT: Antiangiogenic effects of the quinoline-3-carboxamide linomide. Cancer Res 53: 1833–1837, 1993

    Google Scholar 

  333. Vukanovic J, Isaacs JT: Human prostatic cancer cells are sensitive to programmed (apoptotic) death induced by the antiangiogenic agent linomide. Cancer Res 55: 3517–3520, 1995

    Google Scholar 

  334. Siegal JA, Yu E, Brawer MK: Topography of neovascularity in human prostate carcinoma. Cancer 75: 2545–2551, 1995

    Google Scholar 

  335. Hall MC, Troncoso P, Pollack A, Zhau HY, Zagars GK, Chung LW, von Eschenbach AC: Significance of tumor angiogenesis in clinically localized prostate carcinoma treated with external beam radiotherapy. Urology 44: 869–875, 1994

    Google Scholar 

  336. Weidner N, Carroll PR, Flax J, Blumenteld W, Folkman J: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143: 401–409, 1993

    Google Scholar 

  337. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA: Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73: 678–687, 1994

    Google Scholar 

  338. Rosen PJ, Mendoza EF, Landaw EM, Mondino B, Graves MC, McBride JH, Turcillo P, DeKernion J, Belldegrun A: Suramin in hormone-refractory metastatic prostate cancer: a drug with limited efficacy. J Clin Oncol 14: 1626–1636, 1996

    Google Scholar 

  339. Dawson NA, Cooper MR, Figg WD, Headlee DJ, Thibault A, Bergan RC, Steinberg SM, Sausville EA, Myers CE, Sartor O: Antitumor activity of suramin in hormone-refractory prostate cancer controlling for hydrocortisone treatment and flutamide withdrawal as potentially confounding variables. Cancer 76: 453–462, 1995

    Google Scholar 

  340. Firsching A, Nickel P, Mora P, Allolio B: Antiproliferative and angiostatic activity of suramin analogues. Cancer Res 55: 4957–4961, 1995

    Google Scholar 

  341. Meyer GE, Yu E, Siegal JA, Petteway JC, Blumenstein BA, Brawer ML: Serum basic fibroblast growth factor in men with and without prostate carcinoma. Cancer 76: 2304–2311, 1995

    Google Scholar 

  342. Mohler JL: Cellular motility and prostatic carcinoma metastases. [Review]. Cancer Metastasis Rev 12: 53–67, 1993

    Google Scholar 

  343. Stearns ME, Stearns M: Autocrine factors, type IV collagenase secretion and prostatic cancer cell invasion. [Review]. Cancer Metastasis Rev 12: 39–52, 1993

    Google Scholar 

  344. Doyle GM, Sharief Y, Mohler JL: Prediction of metastatic potential by cancer cell motility in the Dunning R 3327 prostatic adenocarcinoma in vivo model. J Urol 147: 514–518, 1992

    Google Scholar 

  345. Pienta KJ, Murphy BC, Isaacs WB, Isaacs JT, Coffey DS: Effect of pentosan, a novel cancer chemotherapeutic agent, on prostate cancer cell growth and motility. Prostate 20: 233–241, 1992

    Google Scholar 

  346. Stearns ME, Wang M: Immunoassays of the metalloproteinase (MMP-2) and tissue inhibitor of metalloproteinase (TIMP 1 and 2) levels in noninvasive and metastatic PC-3 clones: offects of taxol. Oncol Res 6: 195–201, 1994

    Google Scholar 

  347. Stearns ME, Wang M, Stearns M: IL-10 blocks collagen IV invasion by ‘invasion stimulating factor’ activated PC-3 ML cells: upregulation of TIMP-1 expression. Oncol Res 7: 157–163, 1995

    Google Scholar 

  348. Lokeshwar BL, Selzer MG, Block NL, Gunja-Smith Z: Secretion of matrix metalloproteinases and their inhibitors (tissue inhibitor of metalloproteinases) by human prostate in explant cultures: reduced tissue inhibitor of metalloproteinase secretion by malignant tissues. Cancer Res 53: 4493–4498, 1993

    Google Scholar 

  349. Powell WC, Knox JD, Navre M, Grogan TM, Kittelson J, Nagle RB, Bowden GT: Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 53: 417–422, 1993

    Google Scholar 

  350. Pajouh MS, Nagle RB, Breathnach R, Finch JS, Brawer MK, Bowden GT: Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117: 144–150, 1991

    Google Scholar 

  351. Knox JD, Wolf C, McDaniel K, Clark V, Loriot M, Bowden GT, Nagle RB: Matrilysin expression in human prostate carcinoma. Mol Cardinog 15: 57–63, 1996

    Google Scholar 

  352. Baker T, Tickle S, Wasan H, Docherty A, Isenberg D, Waxman J: Serum metalloproteinases and their inhibitors: markers for malignant potential. Br J Cancer 70: 506–512, 1994

    Google Scholar 

  353. Hsu DW, Efird JT, Hedley-Whyte ET: Prognostic role of urokinase-type plasminogen activator in human gliomas. Am J Pathol 147: 114–123, 1995

    Google Scholar 

  354. Achibarou A, Kaiser S, Tremblay G, Ste-Marie LG, Brodt P, Goltzman D: Urokinase over-production results in increased skeletal metastasis by prostate cancer in vitro. Cancer Res 54: 2373–2377, 1994

    Google Scholar 

  355. Keer HN, Gaylis FD, Kozlowski JM, Kwaan HC, Bauer KD, Sinha AA, Wilson MJ: Heterogeneity in plasminogen activator (PA) levels in human prostate cancer cell lines: increased PA activity correlates with biologically aggressive behavior. Prostate 18: 201–214, 1991

    Google Scholar 

  356. Hille B: Ionic Channels of Excitable Membranes. Sunderland, Massachusetts: Sinauer Associates Inc. 1992

    Google Scholar 

  357. Cohen-Armon M, Sokolovsky M: Evidence for involvement of the voltage-dependent Na+ channel gating in depolarization-induced activation of G-proteins. J Biol Chem 268: 9824–9838, 1993

    Google Scholar 

  358. Woodfork KA, Wonderlin WF, Peterson VA, Strobl JS: Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol 162: 163–171, 1995

    Google Scholar 

  359. Wonderlin WF, Woodfork KA, Strobl JS: Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 165: 177–185, 1995

    Google Scholar 

  360. Kondo S, Yin D, Morimura T, Kubo II, Nakatsu S, Takeuchi J: Combination therapy with cisplatin and nifedipine induces apoptosis in cisplatin-sensitive and cisplatin-resistant human glioblastoma cells. Br J Cancer 71: 282–289, 1995

    Google Scholar 

  361. Van Dolah FM, Ramsdell JS: Maitotoxin, a calcium channel activator, inhibits cell cycle progression through the G1/S and G2/M transitions and prevents CDC2 kinase activation in GH4C1 cells. J Cell Physiol 166: 49–56, 1996

    Google Scholar 

  362. Nagy P, Panyi G, Jenei A, Bene L, Gaspar R Jr, Matko J, Damjanovich S: Ion-channel activities regulate transmembrane signaling in thymocyte apoptosis and T-cell activation. Immunol Lett 44: 91–95, 1995

    Google Scholar 

  363. Arcangeli A, Becchetti A, Mannini A, Mugnai G, De Filippi P, Tarone G, Del Bene MR, Barletta E, Wanke E, Olivotto M: Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol 122: 1131–1143, 1993

    Google Scholar 

  364. Isom LL, Ragsdale DS, De Jongh KS, Westenbrock RE, Reber BF, Scheuer T, Catterall WA: Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83: 433–442, 1995

    Google Scholar 

  365. Becchetti A, Arcangeli A, Del Bene MR, Olivotto M, Wanke E: Response to fibroncetin-integrin interaction in leukaemia cells: delayed enhancing of a K+ current. Proc R Soc Lond B Biol Sci 248: 235–240, 1992

    Google Scholar 

  366. Watsky MA: Loss of keratocyte ion channels during wound healing in the rabbit cornea. Invest Ophthalmol Vis Sci 36: 1095–1099, 1995

    Google Scholar 

  367. Schwab A, Wojnowski L, Gabriel K, Oberleithner H: Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J Clin Invest 93: 1631–1636, 1994

    Google Scholar 

  368. Bokvist K, Eliasson L, Ammala C, Renstrom E, Rorsman P: Co-localization of L-type Ca2+ channels and insulincontaining secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J 14: 50–57, 1995

    Google Scholar 

  369. Sheng ZH, Rettig J, Cook T, Catterall WA: Calcium de pendent interaction of N-type calcium channels with the synaptic core complex. Nature 379: 451–454, 1996

    Google Scholar 

  370. Pancrazio JJ, Tabbara IA, Kim YI: Voltage-activated K+ conductance and cell proliferation in small-cell lung cancer. Anticancer Res 13: 1231–1234, 1993

    Google Scholar 

  371. Higgins CF: Volume-activated chloride currents associated with the multidrug resistance P-glycoprotein. [Review]. J Physiol (Lond) 482: 31S–36S, 1995

    Google Scholar 

  372. Yamashita N, Hamada H, Tsuruo T, Ogata E: Enhancement of voltage-gated Na+ channel current associated with multidrug resistance in human leukemia cells. Cancer Res 46: 3736–3741, 1987

    Google Scholar 

  373. Neher E: Nobel lecture. Ion channels for communication between and within cells. [Review]. Neuron 8: 605–612, 1992

    Google Scholar 

  374. Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, Abel PD, Djamgoz MB, Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 369: 290–294, 1995

    Google Scholar 

  375. Laniado ME, Lalani E-N, Fraser SP, Grimes JA, Bhangal G, Djamgoz MB, Abel PD: Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 1997 (in press)

  376. Laniado ME, Lalani E-N, Fraser SP, Djamgoz MB, Abel PD: Outward voltage-activated K+ currents distinguish LNCaP and PC-3 cell lines. Eur Urol 30(52): 434, 1996 (Abstract)

    Google Scholar 

  377. Marino AA, Iliev IG, Schwalke MA, Gonzalez E, Marler KC, Flanagan CA: Association between cell membrane potential and breast cancer. Tumour Biol 15: 82–89, 1994

    Google Scholar 

  378. Wonderlin WF, Woodfork KA, Strobl JS: Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 165: 177–185, 1995

    Google Scholar 

  379. Schwab A, Gabriel K, Finsterwalder F, Folprecht G, Greger R, Kramer A, Oberleithner H: Polarized ion transport during migration of transformed Madin-Darby canine kidney cells. Pflugers Arch 430: 802–807, 1995

    Google Scholar 

  380. Kyprianou N, English HF, Isaacs JT: Activation of a Ca−+-Mg++-dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate 13: 103–118, 1988

    Google Scholar 

  381. Martikainen P, Isaacs JT: Role of calcium in the programmed death of rat prostatic glandular cells. Prostate 17: 175–188, 1990

    Google Scholar 

  382. Furuya Y, Lundmo P, Short AD, Gill DL, Isaacs JT: The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res 54: 6167–6175, 1994

    Google Scholar 

  383. Connor J, Sawezuk IS, Benson MC, Tomashefsky P, O'Toole KM, Olsson CA, Buttyan R: Calcium channel antagonists delay regression of androgen-dependent tissues and suppress gene activity associated with cell death. Prostate 13: 119–130, 1988

    Google Scholar 

  384. McDonnell T, von Eschenbach A, Marin M, Fernandez A, Westin P, Shi-Ming T, Brisbay S, Bick R, Buju L, McConkey D: Bel-2 confers resistance to cell death induction by androgen-ablation and chemotherapy in prostate cancer cells. J Urol 155(Suppl): 527, 1996

    Google Scholar 

  385. Steinsapir J, Socci R, Reinach P: Effects of androgen on intracellular calcium of LNCaP cells. Biochem Biophys Commun 179: 90–96, 1991

    Google Scholar 

  386. Batra S, Popper LD, Hartley-Asp B: Effect of calcium and calcium antagonists on 45Ca influx and cellular growth of human prostatic tumor cells. Prostate 19: 299–311, 1991

    Google Scholar 

  387. Peppelenbosch MP, Tertoolen LG, De Laat SW, Zivkovie D: Ionic responses to epidermal growth factor in zebrafish cells. Exp Cell Res 218: 183–188, 1995

    Google Scholar 

  388. Misra RP, Bonni A, Miranti CK, Rivera VM, Sheng M, Greenberg ME: L-type voltage-sensitive calcium channel activation stimulates gene expression by a serum response factor-dependent pathway. J Biol Chem 26: 25483–25493, 1994

    Google Scholar 

  389. Matsunaga H, Nishimoto I, Kojima I, Yamashita N, Kurokawa K, Ogata E: Activation of a calcium-permeable cation channel by insulin-like growth factor II in BALB/c 3T3 cells. Am J Physiol 255: C442–446, 1988

    Google Scholar 

  390. Kanzaki M, Shibata H, Morgami H, Kojima I: Expression of calcium-permeable eation channel CD20 accelerates progression through the G1 phase in Balb/c 3T3 cells. J Biol Chem 270: 13099–13104, 1995

    Google Scholar 

  391. Huang Y, Rane SG: Potassium channel induction by the Ras/Raf signal transduction cascade. J Biol Chem 269: 31183–31189, 1994

    Google Scholar 

  392. Brown MJ, Loew LM: Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J Cell Biol 127: 117–128, 1994

    Google Scholar 

  393. Carter HB, Partin AW, Coffey DS: Prediction of metastatic potential in an animal model of prostate cancer: flow cytometric quantification of cell surface charge. J Urol 142: 1338–1341, 1989

    Google Scholar 

  394. Carter HB, Coffey DS: Cell surface charge in predicting metastatic potential of aspirated cells from the Dunning rat prostatic adenocarcinoma model. J Urol 140: 173–175, 1988

    Google Scholar 

  395. Ware JL, Paulson DF, Mickey GH, Webb KS: Spontaneous metastasis of cells of the human prostate carcinoma cell line PC-3 in athymic nude mice. J Urol 128: 1064–1067, 1982

    Google Scholar 

  396. Sherwood ER, Berg LA, Mitchell NJ, McNeal JE, Kozlowski JM, Lee C: Differential cytokeratin expression in normal, hyperplastic and malignant epithelial cells from human prostate. J Urol 143: 167–171, 1990

    Google Scholar 

  397. Nagle RB, Ahmann FR, McDaniel KM, Paquin ML, Clark VA, Celniker A: Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res 47: 281–286, 1987

    Google Scholar 

  398. Pang S, Taneja S, Dardashti K, Cohan P, Kaboo R, Sokoloff M, Tso CL, deKernion JB, Belldegrun AS: Prostate tissue specificity of the prostate-specific antigen promoter isolated from a patient with prostate cancer. Human Gene Therapy 6: 1417–1426, 1995

    Google Scholar 

  399. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD: Expression of the prostate-specific membrane antigen. Cancer Res 54: 1807–1811, 1994

    Google Scholar 

  400. Kostenuik PJ, Sanchez-Sweatman O, Orr FW, Singh G: Bone cell matrix promotes the adhesion of human prostatic carcinoma cells via the α2β1 integrin. Clin Exp Metastasis 14: 19–26, 1996

    Google Scholar 

  401. Dedhar S, Jewell K, Rojiani M, Gray V: The receptor for the basement membrane glycoprotein entactin is the integrin alpha 3/beta 1. J Biol Chem 267: 18908–18914, 1992

    Google Scholar 

  402. Rokhlin OW, Cohen MB: Expression of cellular adhesion molecules on human prostate tumor cell lines. Prostate 26: 205–212, 1995

    Google Scholar 

  403. Fan K: Heterogeneous subpopulations of human prostatic adenocarcinoma cells: potential usefuiness of P21 protein as a predictor for bone metastasis. J Urol 139: 318–322, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalani, EN., Laniado, M.E. & Abel, P.D. Molecular and cellular biology of prostate cancer. Cancer Metastasis Rev 16, 29–66 (1997). https://doi.org/10.1023/A:1005792206377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005792206377

Navigation