Skip to main content
Log in

Localization of the Site of Oxygen Radical Generation inside the Complex I of Heart and Nonsynaptic Brain Mammalian Mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondrial production of oxygen radicals seems to be involved in many diseases and aging. Recent studies clearly showed that a substantial part of the free radical generation of rodent mitochondria comes from complex I. It is thus important to further localize the free radical generator site within this respiratory complex. In this study, superoxide production by heart and nonsynaptic brain submitochondrial particles from up to seven mammalian species, showing different longevities, were studied under different conditions. The results, taking together, show that rotenone stimulates NADH-supported superoxide generation, confirming that complex I is a source of oxygen radicals in mammals, in general. The rotenone-stimulated NADH-supported superoxide production of the heart and nonsynaptic brain mammalian submitochondrial particles was inhibited both by p-chloromercuribenzoate and by ethoxyformic anhydride. These results localize the complex I oxygen radical generator between the ferricyanide and the ubiquinone reduction site, making iron—sulfur centers possible candidates, although unstable semiquinones can not be discarded. The results also indicate that the previously described inverse correlation between rates of mitochondrial oxygen radical generation and mammalian longevity operates through mechanisms dependent on the presence of intact functional mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altman, P. and Dittmer, P. (1972). In Biology Data Book, Federation American Society Experimental Biology, Bethesda, Maryland, pp. 229-235.

    Google Scholar 

  • Bailey, S. M., Pietsch, E. C., and Cunningham, C. C. (1999). Free Radical Biol. Med. 27, 891-900.

    Google Scholar 

  • Barja, G. (1999). J. Bioenerg. Biomembr. 31, 347-366.

    Google Scholar 

  • Barja, G. and Herrero, A. (1998). J. Bioenerg. Biomembr. 30, 235-243.

    Google Scholar 

  • Barja, G. and Herrero, A. (2000). FASEB J., 14, 312-318.

    Google Scholar 

  • Belzen, R. V., Kotlyar, A. B., Moon, N., Dunham, R., and Albracht, S. P. J. (1997). Biochemistry 36, 886-893.

    Google Scholar 

  • Boveris, A. (1984). Methods Enzymol. 105, 429-435.

    Google Scholar 

  • Dutton, P. L., Moser, C. C., Sled, V. D., Daldal, F., and Ohnishi, T. (1998). Biochim. Biophys. Acta 1364, 245-257.

    Google Scholar 

  • Hansford, R. G., Hogue, B. A., and Mildaziene, V. (1997). J. Bioenerg. Biomembr. 29, 89-95.

    Google Scholar 

  • Harman, D. (1972). Amer. Geriatr. Soc. 20, 145-147.

    Google Scholar 

  • Hasegawa, E., Kang, D., Sakamoto, K., Mitsumoto, A., Nagano, T., Minakami, S., and Takeshige, K. (1997). Arch. Biochem. Biophys. 337, 69-74.

    Google Scholar 

  • Hensley K., Pye, Q. N., Maidt, M. L., Stewart, C. A., Robinson, K. A., Jaffrey, F., and Floyd, R. A. (1998). J. Neurochem. 71, 2549-2557.

    Google Scholar 

  • Herrero, A. and Barja, G. (1997a). Mechan. Ageing Develop. 98, 95-111.

    Google Scholar 

  • Herrero, A. and Barja, G. (1997b). J. Bioenerg. Biomembr. 29, 241-249.

    Google Scholar 

  • Herrero, A. and Barja, G. (1998). Mechan. Ageing Develop. 103, 133-146, 1998.

    Google Scholar 

  • Kang, D., Narabayashi, H., Sata, T., and Takeshige, K. (1983). J. Biochem. 94, 1301-1306.

    Google Scholar 

  • Kashkarov, P., Vasil'eva, E. V., and Ruuge, E. K. (1994). Biochemistry (Moscow) 59, 601-605.

    Google Scholar 

  • Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993). Free Radical Biol. Med. 15, 621-627.

    Google Scholar 

  • Lai, C. K. and Clark, J. B. (1979). Methods Enzymol. 55, 51-60.

    Google Scholar 

  • Li, Y. and Trush, M. A. (1998). Biochem. Biophys. Res. Commun. 253, 295-299.

    Google Scholar 

  • Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G., and Attardi, G. (1999). Science 286, 774-779.

    Google Scholar 

  • Ragan, C. I. (1976). Biochim. Biophys. Acta 456, 249-290.

    Google Scholar 

  • Robinson, B. H. (1998). Biochim. Biophys. Acta 1364, 271-286.

    Google Scholar 

  • Ruzicka, F. J. and Crane, F. L. (1970). Biochim. Biophys. Acta 223, 71-85.

    Google Scholar 

  • Sohal, R. S., Svensson, I., and Brunk, U. T. (1990). Mechan. Ageing Develop. 53, 209-215.

    Google Scholar 

  • Takeshige, K. and Minakami, S. (1979). Biochem. J. 180, 129-135.

    Google Scholar 

  • Turrens, J. F. and Boveris, A. (1980). Biochem. J. 191, 421-427.

    Google Scholar 

  • Tyler, D. (1992). The Mitochondrion in Health and Disease, VCH Publishers, New York, pp. 306.

    Google Scholar 

  • Vik, S. B. and Hatefi, V. (1984). Biochem. Intern. 9, 547-555.

    Google Scholar 

  • Wyatt, K. M., Skene, C., Veitch, K., Hue, L., and McCormack, J. G. (1995). Biochem. Pharm. 50, 1599-1606.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, A., Barja, G. Localization of the Site of Oxygen Radical Generation inside the Complex I of Heart and Nonsynaptic Brain Mammalian Mitochondria. J Bioenerg Biomembr 32, 609–615 (2000). https://doi.org/10.1023/A:1005626712319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005626712319

Navigation