Skip to main content
Log in

Chromium-Resistant Bacterial Populations from a Site Heavily Contaminated with Hexavalent Chromium

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Chromium-containing industrial effluents are primarily responsible for environmental contamination by toxic and highly mobile, hexavalent chromium. The dilution plate-count method, using media amended with Cr(VI) at concentrations ranging from 0 to 1000 mg L-1, was used to compare the sizes of Cr(VI)-resistant bacterial populations from a soil contaminated with 25 100 mg kg-1 total Cr [12 400 mg kg-1 Cr(VI)] to those isolated from a slightly contaminated soil (99.6 mg kg-1 total Cr) and two other soils without any history of Cr contamination. Bacterial populations resistant to 500 mg L-1 Cr(VI) were isolated from all soils except the heavily contaminated soil. To determine whether Cr-resistant bacterial populations were indigenous to both the contaminated and the uncontaminated soils, enrichment cultures containing Cr(VI) at concentrations ranging from 0 to 1000 mg L-1 were employed. Bacterial populations, as high as 105 (colony forming units) CFU g-1 soil, tolerant of 500 mg L-1 Cr(VI) were isolated from all soils within 48 h of enrichment suggesting that the presence of aerobic Cr(VI)-resistant bacterial populations is unrelated to contamination levels or contamination history. However, identification of these resistant bacteria using fatty acid profiles was unsuccessful suggesting that these populations may have unique characteristics. Fungal colonies resistant to 1000 mg L-1 Cr(VI) were routinely isolated from both uncontaminated and contaminated soils. The results suggest that Cr-resistant microorganisms may be present in soils, even those with no history of Cr contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Apel, W. A. and Turick, C. E.: 1991, 'Bioremediation of Hexavalent Chromium by Bacterial Reduction', in R. W. Smith and M. Mishra (eds.), Mineral Bioprocessing, The Minerals, Metals and Materials Society, Warrensdale, P, pp. 376–387.

    Google Scholar 

  • Bartlett, R. J. and James, B. R.: 1988, 'Mobility and Bioavailability of Chromium in Soils', in J. O. Nriagu and E. Nieboer (eds.), Chromium in the Natural and Human Environment, John Wiley and Sons, New York, pp. 267–304.

    Google Scholar 

  • Bartlett, R. J. and Kimble, J. M.: 1976, J. Environ. Qual. 5, 383.

    Google Scholar 

  • Bopp, L. H.: 1980, 'Chromate Resistance and Chromate Reduction in Bacteria', Ph. D. thesis, Rensselaer Polytechnic Institute, Troy, N.Y.

    Google Scholar 

  • Bopp, L. H. and Ehrlich, H. L.: 1988, Arch. Microbiol. 150, 426.

    Google Scholar 

  • Cervantes, C. and Ohtake, H.: 1988, FEMS Microbiol. Lett. 56, 173.

    Google Scholar 

  • Choi, S. C. and Young, L. Y.: 1995, presented at the 95th General Meeting of the American Society for Microbiology, May 21–25. American Society for Microbiology, Washington, D.C.

  • Coleman, R. N.: 1988, 'Chromium Toxicity: Effects on Microorganisms with Special Reference to the Soil Matrix', in J. O. Nriagu and E. Nieboer (eds.), Chromium in the Natural and Human Environment, John Wiley and Sons, New York, pp. 335–350.

    Google Scholar 

  • Day, P. R.: 1965, 'Particle Fraction and Particle-Size Analysis', in C. A. Black (ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Am. Soc. Agron., Inc., Madison,WI, pp. 548–567.

    Google Scholar 

  • Deleo, P. C. and Ehrlich H. L.: 1994, Appl. Microbiol. Biotechnol. 40, 756.

    Google Scholar 

  • Ehrlich, H. L.: 1986, 'Interactions of Heavy Metals and Microorganisms', in D. Carlisle (ed.), Mineral Exploration: Biological Systems and Organic Matter, Rubey Volume V, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 221–237.

    Google Scholar 

  • Fujii, E., Toda, K. and Ohtake, H.: 1990, J. Ferment. Bioengin. 69, 365.

    Google Scholar 

  • James, B. R. and Bartlett, R. J.: 1983, J. Environ. Qual. 12, 177.

    Google Scholar 

  • Komori, K., Rivas, A., Toda, K. and Ohtake, H.: 1990, Appl. Microbiol. Biotechnol. 33, 117.

    PubMed  Google Scholar 

  • Lindsay, W. L. and Norvell, W. A.: 1978, Soil Sci. Am. J. 42, 421.

    Google Scholar 

  • Losi, M. E. and Frankenburger Jr., W. T.: 1994, Water, Air, and Soil Pollut. 74, 405.

    Google Scholar 

  • McGrath, S. P. and Smith, S.: 1990, 'Chromium and Nickel', in B. J. Alloway (ed.), Heavy Metals in Soils, John Wiley & Sons, New York, pp. 125–147.

    Google Scholar 

  • Ohtake, H. and Silver, S.: 1994, 'Bacterial Detoxification of Toxic Chromate', in G. R. Chaudry (ed.), Biological Degradation and Bioremediation of Toxic Chemicals, Dioscorides Press, Portland, pp. 403–415.

    Google Scholar 

  • Pillai, S. D., Josephson, K. L., Bailey, R. L., Gerba, C. P. and Pepper, I. L.: 1991, Appl. Environ. Microbiol. 57, 2283.

    PubMed  Google Scholar 

  • Roane, T. M. and Pepper, I. L.: 1996, presented at the 96th General Meeting of the American Society for Microbiology, May 19–23, New Orleans, Louisiana. American Society for Microbiology, Washington, DC.

  • Roszak, D. B. and Colwell, R. R.: 1987, Microbiol. Rev. 51, 365.

    PubMed  Google Scholar 

  • Shacklette, H. T. and Boerngen, J. G.: 1984, Element Concentrations in Soils and Other Surficial Materials of the Conterminous united States, U.S. Geological Survey Professional Paper 1270, United States Government Printing Office, Washington, D.C.

    Google Scholar 

  • Tunlid, A. and White, D. C.: 1992, 'Biochemical Analysis of Biomass, Community Structure, Nutritional Status, and Metabolic Activity of Microbial Communities in Soil', in G. Stotzky and J. M. Bollag (eds.), Soil BiochemistryVol. 7, Marcel Dekker, New York.

    Google Scholar 

  • Wang, P., Mori T., Komori K., Sasatsu, M., Toda, K. and Ohtake, H.: 1989, Appl. Environ. Microbiol. 55, 1665.

    Google Scholar 

  • Wang, Y. T. and Shen, H.: 1995, J. Ind. Microbiol. 14, 159.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, J.L., Gonzalez, G., Goodell, P.C. et al. Chromium-Resistant Bacterial Populations from a Site Heavily Contaminated with Hexavalent Chromium. Water, Air, & Soil Pollution 109, 263–276 (1999). https://doi.org/10.1023/A:1005075800292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005075800292

Navigation