Skip to main content
Log in

Effect of Organic Materials on Partitioning, Extractability and Plant Uptake of Metals in an Alum Shale Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Soils developed on sulphide-bearing shale (alum shale) in Norway contain naturally high amount of heavy metals. We conducted a greenhouse pot experiment to study the effect of four rates (0, 2, 4, and 8%) and three sources (cow manure, pig manure and peat soil) of organic matter in partitioning and distribution, extractability and plant uptake of Cd, Cu, Ni and Zn in an alum shale soil. Sequential extraction scheme was used to determine the distribution patterns of metals in the soil. DTPA was used for extracting the metals from the soil. Wheat (Triticum aestivum) was used as a test crop to study the plant uptake of metals. The highest amount of Cd was present in the exchangeable fraction, irrespective of the rate and source of organic matter applied. Copper, Ni, and Zn, on the other hand, were present only in small quantities in this fraction. The largest fraction of Cu was associated with organic matter and the amounts present in the oxide, carbonate and exchangeable fractions were very small. Nickel and Zn were found mainly in the residual fraction. Increasing rates of cow and pig manure decreased the amounts of Cd and Ni associated with the exchangeable fraction whereas, the addition of peat soil at the same rate increased the amounts of these metals associated with this fraction. This effect of organic matter was primarily associated with the change in soil pH caused by different organic matter sources. The DTPA-extractable metals were decreased with increasing rates of organic matter application, irrespective of its source. Grain and straw yields of wheat were decreased with increasing rates of organic matter. The application of organic matter increased the Cu and Zn concentrations in both grain and straw. The concentration of all metals was lower in plants grown in the cow manure amended soil as compared to those grown in the soil amended with either pig manure or peat soil. These results sugggest that the source of organic matter was a determining factor for metal distribution in the soil and for metal uptake by plants. In this study cow manure slightly increased the soil pH and thus was more effective than either pig manure or peat soil in reducing the plant uptake of metals but in general the efficiency of the organic material in reducing heavy metal uptake was small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J.: 1990, in B. J. Alloway (ed.), Heavy Metals in Soils, John Wiley and Sons, New York, pp. 100-124.

    Google Scholar 

  • Aualiitia, T. U. and Pickering, W. F.: 1987, Water, Air and Soil Pollut. 35, 171.

    Google Scholar 

  • Benjamin, M. M.: 1981, J. Colloid and Interface Sci. 79, 209.

    Google Scholar 

  • Brown, P. H., Dunemann, L. Schulz, R. and Marschner, H.: 1989, Z. Pflanzenernähr. Bodenkd. 152, 85.

    Google Scholar 

  • Brummer, G. and Herms, U.: 1983, in B. Ulrich and J. Pankrath (eds.), Effects of Accumulation of Air Pollutants in Forest Ecosystems, D. Reidel Publ. Co. Dordrecht, The Netherlands.

    Google Scholar 

  • Buffle, J.: 1988, Complexation Reactions in Aquatic Systems, an Analytical Approach, John Wiley and Sons, Chichester.

    Google Scholar 

  • Calvet, R., Bourgeois, S. and Msaky, J. J.: 1990, Int. J. Environ. Anal. Chem. 39, 31.

    Google Scholar 

  • Del Castilho, P., Chardon, W. J. and Salomons, W.: 1993, J. Environ. Qual. 22, 689.

    Google Scholar 

  • Elliot, H. A., Liberati, M. R. and Huang, C. P.: 1986, J. Environ. Qual. 15, 214.

    Google Scholar 

  • Elonen, P.: 1971, Acta Agric. Fenn. 122, 1.

    Google Scholar 

  • Eriksson, J. E.: 1988, Water, Air and Soil Pollut. 40, 359.

    Google Scholar 

  • Haghiri, F.: 1974, J. Environ. Qual. 3, 180.

    Google Scholar 

  • Harrison, R. M., Laxen, D. P. H. and Wilson, S. J.: 1981, Environ. Sci. Technol. 15, 1378.

    Google Scholar 

  • He, Q. B. and Singh, B. R.: 1993, J. Soil Sci. 44, 641.

    Google Scholar 

  • Hickey, M. G. and Kittrick, J. A.: 1984, J. Environ. Qual. 13, 372.

    Google Scholar 

  • Huang, C. P. and Lin, C.: 1981, in Tewari, P. H. (ed.), Adsorption from Aqueous Solutions, Plenum Press, New York.

    Google Scholar 

  • Irving, H. and Williams, R. J. P.: 1953, J. Chem. Soc., 3182.

  • Iyengar, S. S., Martens, D. C. and Miller, W. P.: 1981, Soil Sci. Soc. Am. J. 45, 735.

    Google Scholar 

  • Jeng, A. S.: 1992. Acta Agric. Scand. 42, 76.

    Google Scholar 

  • Jeng, A. S. and Bergseth, H.: 1992, Acta Agric. Scand. 42, 88.

    Google Scholar 

  • Jeng, A. S. and Singh, B. R.: 1993, Soil Sci. 156, 240.

    Google Scholar 

  • Karlson, S., Allard, B. and Hakansson, K.: 1988, Chem. Geol. 67, 1.

    Google Scholar 

  • Kheboian, C. and Bauer, C. F.: 1987, Anal. Chem. 59, 1417.

    Google Scholar 

  • King, L. D.: 1988, J. Environ. Qual. 17, 251.

    Google Scholar 

  • König, N., Baccini, P. and Ulrich, B.: 1986, Z. Pflanzenernaehr. Bodenkd. 149, 68.

    Google Scholar 

  • Levy, D. B., Barbaric, K. A., Siemer, E. G. and Sommers, L. E.: 1992, J. Environ. Qual. 21, 185.

    Google Scholar 

  • Lindsay, W. L. and Norvell, W. A.: 1978, Soil Sci. Soc. Am. J. 42, 421.

    Google Scholar 

  • McGrath, S. P., Sanders, J. R. and Shalaby, M. H.: 1988, Geoderma 42, 177.

    Google Scholar 

  • McKenzie, R. M.: 1972, Geoderma 8, 29.

    Google Scholar 

  • Mehlum, H. K.: 1996, ‘Total and Plant Available Metals in Soils and Plants from Alum Shales Areas (in Norwegian)', M. Sc. thesis, Agric. Univ. Norway, Ès.

    Google Scholar 

  • Mitchell, C. C., Windham, S. T., Nelson, D. B. and Baltikauski, M. N.: 1992, in J. P. Blake et al. (ed.), Proc. 1992 National Poultry Waste Management Symposium Committee, Birmingham, AL. 6-8 Oct. 1992, Auburn Univ. Press, Auburn, AL.

    Google Scholar 

  • Møberg, J. P. and Petersen, L.: 1982, Øvelsesvejledning til geologi og jordbundslære II. Den kgl. Veterinær-og Landbbohøgskole, København, p. 136.

  • Norrish, K.: 1975, in D. J. D. Nicholas and A. R, Egan (eds.), Trace Elements in Soil-Plant-Animal Systems, Academic Press, Inc., New York

    Google Scholar 

  • Page, A. L. Miller, R. H. and Keeney, D. R. (eds.): 1982, Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd edn. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Ram, N. and Verloo, M.: 1985, Pedologie 35, 147.

    Google Scholar 

  • Ramos, L., Hernandez, L. M. and Gonzalez, M. J.: 1994, J. Environ. Qual. 23, 50.

    Google Scholar 

  • Rauret, G., Rubio, R., López-Sanchez, J. F. and Casassas, E.: 1989, Int. J. Environ. Anal. Chem. 35, 89.

    Google Scholar 

  • Salomos, W. and Förstner, U.: 1984, Metals in the Hydrocycle, Springer Verlag, Berlin.

    Google Scholar 

  • SAS Institue, Inc.: 1994, JMP Statistics and Graphics Guide Version 3.0.2. SAS Institute, Inc. Cary, NC.

    Google Scholar 

  • Shuman, L. M.: 1979, Soil Sci. 127, 11.

    Google Scholar 

  • Shuman, L. M.: 1985, Soil Sci. 140, 11.

    Google Scholar 

  • Sims, J. T. and Kline, J. S.: 1991, J. Environ. Qual, 20, 387.

    Google Scholar 

  • Singh, B. R., Narwal, R. P., Jeng, A. S. and Almos, È.: 1995, Commun. Soil Sci. Plant Anal. 26, 2123.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C. and Bisson, M.: 1979, Anal. Chem. 51, 844.

    Google Scholar 

  • Van Der Watt, H. v. H., Summer, M. E. and Cabrera, M. L.: L 1994, J. Environ. Qual. 23.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narwal, R.P., Singh, B.R. Effect of Organic Materials on Partitioning, Extractability and Plant Uptake of Metals in an Alum Shale Soil. Water, Air, & Soil Pollution 103, 405–421 (1998). https://doi.org/10.1023/A:1004912724284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004912724284

Navigation