Skip to main content
Log in

Experimental methods for measuring the optimum amount of dispersant for seven Sumitomo alumina powders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Seven Sumitomo alumina powders of different surface areas and particle size distributions were studied with a view to determining the optimum amount of dispersant (Darvan 821A) required to stabilise aqueous suspensions prepared from the powders. Three different techniques were used; sedimentation, particle sizing and acoustophoresis. Acoustophoresis proved to be the most accurate and quickest way of establishing the optimum amount. It was also shown that the optimum amount of dispersant (0.59mg/m2/) required to stabilise the different sized alumina powders was independent of thepowder surface area/size. Sedimentation results demonstrated that the larger particles acted like hard spheres with thin double layers and gave a smaller relative sediment height than the small particles under the same conditions, i.e. volume fraction and electrolyte strength. This was because the small particles acted as soft spheres with thick double layers that resulted in the particles keeping far apart from one another and hence giving a larger sediment volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Shaw, “Introduction to Colloid and Surface Chemistry” (Butterworth, Heinemann, 1992).

    Google Scholar 

  2. D. H. Everett, “Basic Principles of Colloid Science” (Royal Society of Chemistry, 1988).

  3. J. Israelachvili, “Intermolecular and Surface Forces, ” 2nd edition (Academic Press, New York, 1991).

    Google Scholar 

  4. R. J. Hunter, “Foundations of Colloid Science, ” Vol. 1 (Oxford Science Publications, 1995).

  5. R. W. O'brien, J. Fluid Mech. 212 (1990) 81–93.

    Google Scholar 

  6. R. W. O'brien, B. R. Midmore, A. Lamb and R. J. Hunter, Faraday Discussions 90 (1990) 301–312.

    Google Scholar 

  7. R. Greenwood and L. Bergstrom, J. Eur. Ceram. Soc. 17 (1997) 537–548.

    Google Scholar 

  8. C. Galassi, E. Roncari, R. Greenwood and A. Piancastelli, Proc. Fifth Euro-Ceramics Conference, Versailles, France, Key Engineering Materials 132136 (1997) 329–332.

    Google Scholar 

  9. N. P. Miller and J. C. Berg, Coll. and Surf. 59 (1991) 119–128.

    Google Scholar 

  10. T. S. B. Sayer, Coll. and Surf. 77 (1993) 1, 39–47.

    Google Scholar 

  11. W. N. Rowlands and R. W. O'brien, J. Coll. and Inter. Sci. 175 (1995) 1, 190–200.

    Google Scholar 

  12. M. Kosmulski and J. B. Rosenholm, J. Phys. Chem. 100 (28) (1996) 11,681–11,687.

    Google Scholar 

  13. M. Deboer, R. G. Leliveld, A. J. Vandillen, J. W. Geus and H. G. Bruil, Appl. Catal. A 102(1) (1993) 35–51.

    Google Scholar 

  14. T. E. Petroff, M. Sayer and Sam.Hesp, Coll. and Surf. A 78 (1993) 235.

    Google Scholar 

  15. T. Cosgrove, T. L. Crowley, M. A. Cohen Stuart, B. Vincent and F. H. W. H. Waajen, Macromolecules 17 (1984) 1825.

    Google Scholar 

  16. R. Greenwood, P. F. Luckham and T. Gregory, Coll. and Surf. A 98 (1995) 117–125.

    Google Scholar 

  17. J. A. Baker, J. C. Berg and R. A. Pearson, Langmuir 5 (1989) 339.

    Google Scholar 

  18. M. J. Garvey, TH. F. Tadros, B. Vincent, J. Coll. and Inter. Sci. 55 (1976) 440.

    Google Scholar 

  19. R. Greenwood and K. Kendall, Paper Number 5, World Congress on Particle Technology 3, Brighton, UK, July 1998.

  20. As ref. 4, p. 135.

  21. As ref. 4, p. 332.

  22. J. Cessarano III and I. A. Aksay, J. Amer. Ceram. Soc. 71(12) (1988) 1062–1067.

    Google Scholar 

  23. M. A. Faers and P. F. Luckham, Coll. and Surf. A 86 (1994) 317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, M., Greenwood, R. & Kendall, K. Experimental methods for measuring the optimum amount of dispersant for seven Sumitomo alumina powders. Journal of Materials Science 33, 5149–5156 (1998). https://doi.org/10.1023/A:1004419617723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004419617723

Keywords

Navigation