Skip to main content
Log in

Acidophilic and acid-tolerant fungi and yeasts

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fungi have not been systematically studied from mines and mine drainage waters, even though they are often encountered there. This paper provides a key from literature sources and lists morphological characteristics and habitat information for the 81 fungal species that have been collected or identified in pH <4 environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, E. J., 1923. The occurrence and action of fungi in soils. Soil Sci. 16: 207–216.

    Google Scholar 

  • Alexopoulos, C. J., C. W. Mims & M. Blackwell, 1996. Introductory Mycology. Wiley, New York: 880 pp.

    Google Scholar 

  • Armstrong, G. M., 1921. Studies in the physiology of the fungi-sulfur nutrition, the use of thiosulphate as influenced by hydrogen ion concentration. Ann missouri Bot. Garden 8: 237–248.

    Google Scholar 

  • Babich, H. & G. Stotzky, 1977. Sensitivity of various bacteria, including actinomycetes, and fungi to cadmium and the influence of pH on sensitivity. Apl. envir. Microbiol. 33: 681–695.

    Google Scholar 

  • Barnett, H. L. & B. B. Hunter, 1987. Illustrated Genera of Imperfect Fungi. 4th edn, McMillian, New York: 218 pp.

    Google Scholar 

  • Barnett, J. A., R. W. Payne & D. Yarrow, 1983. Yeasts: Characteristics and Identification. Cambridge Univ. Press, Cambridge: 811 pp.

    Google Scholar 

  • Barron, G. L., 1962. New species and new records of Oidiodendron. Can. J. Bot. 40: 606–607.

    Google Scholar 

  • Batra, L. R., 1991. World species of Monilinia (Fungi): their ecology, biosystematics and control. Cramer, Berlin: 246 pp.

    Google Scholar 

  • Bedford, C. L., 1936. Morphological and physiological studies upon a Penicillium sp. tolerant to saturated copper sulfate. Z. Bakteriol. 94: 102–112.

    Google Scholar 

  • Belly, R. T., M. R. Tansey & T. D. Brock, 1973. Algal excretion of 14C-labeled compounds and microbial interactions in Cyanidium caldarium mats. J. Phycol. 9: 123–127.

    Google Scholar 

  • Benjamin, C. R. & C. W. Hesseltine, 1959. Studies on the genus Phycomyces. Mycologia 51: 751–771.

    Google Scholar 

  • Brewer, D., 1958. Studies on slime accumulation in pulp and paper mills. I: Some fungi isolated from mills in New Brunswick and Newfoundland. Can. J. Bot. 36: 941–946.

    Google Scholar 

  • Brown, J. C., 1958. Soil fungi of some British sand dunes in relation to soil type and succession. J. Ecol. 46: 641–664.

    Google Scholar 

  • Burkholder, P. R. & I. McVeigh, 1940. Growth of Phycomyces blakesleeanus in relation to varied environmental conditions. Am. J. Bot. 27: 634–640.

    Google Scholar 

  • Christensen, M. & W. F. Wittingham, 1965. The soil microfungi of open bogs and conifer swamps in Wisconsin. Mycologia 57: 883–896.

    Google Scholar 

  • Darby, R. T. & D. R. Goddard, 1950. Studies of the respiration of the mycelium of the fungus Myrothecium verrucaria. Am. J. Bot. 37: 379–381.

    Google Scholar 

  • De Hoog, G. S. 1985. Taxonomy of the Dactylaria complex, IV-VI. Stud. Mycol. 26: 53 pp.

    Google Scholar 

  • Domsch, K. H., W. Gams & T. H. Anderson, 1993. Compendium of soil fungi. Vol. I, IHW-Verlag, Eching, Germany: 1264 pp.

    Google Scholar 

  • Ehrlich, H. L., 1996. Geomicrobiology, 3. Marcel Dekker, New York: 719 pp.

    Google Scholar 

  • Gadd, G. M. & A. J. Griffiths, 1980. Influence of pH on toxicity and uptake of copper in Aureobasidium pullulans. Trans. br.Mycol. Soc. 75: 91–96.

    Google Scholar 

  • Gadd, G. M., J. A. Chudek, R. Foster & R. H. Reed, 1984. The osmotic response of Penicillium ochro-chloron: Changes in internal solute levels in response to copper and salt stress. J. gen. Microbiol. 130: 1969–1975.

    Google Scholar 

  • Gadd, G. M. & C. White, 1985. Copper uptake by Penicillium ochro-chloron: Influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. J. gen. Microbiol. 131: 1875–1879.

    Google Scholar 

  • Gilman, J. C, 1957. A manual of soil fungi. 2nd edn. Iowa State College Press, Ames, Iowa: 450 pp.

    Google Scholar 

  • Gould, W. D., J. I. Fujikawa & F. D. Cook, 1974. A soil fungus tolerant to extreme acidity and high salt concentration. Can. J. Microbiol. 20: 1023–1027.

    Google Scholar 

  • Gray, T. R. G. & P. Baxby, 1968. Chitin decomposition in soil. 2. The ecology of chitinoclastic micro-organisms in forest soil. Trans. br. Mycol. Soc. 51: 293–309.

    Google Scholar 

  • Grayston, S. J., 1987. Sulphur oxidation and nitrification by fungi in vitro and in soils: PhD Thesis, University of Sheffield, U.K.

    Google Scholar 

  • Hawker, L. E., 1950. Physiology of Fungi. University of London Press, London: 360 pp.

    Google Scholar 

  • Hawksworth, D. L., P. M. Kirk, B. C. Sutton & D. N. Pegler, 1995. Ainsworth and Bisby's Dictionary of the Fungi, Including the Lichens, 8. CAB International, University Press Cambridge, U.K.: 616 pp.

    Google Scholar 

  • Havas, M. & T. C. Hutchinson, 1983. The Smoking Hills: natural acidification of an aquatic ecosystem. Nature 301: 23–27.

    Google Scholar 

  • Holland, H. L. & I. M. Carter, 1982. The mechanism of sulphide oxidation by Mortierella isabellina NRRL 1757. Can. J. Chem. 60: 2420–2425.

    Google Scholar 

  • Ivarson, K. C. & H. Morita, 1982. Single-cell protein production by the acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper. Appl. environ. Microbiol. 43: 643–647.

    Google Scholar 

  • Jackson, L. W. R., 1940. Effects of H-ion and Al-ion concentration damping-off of conifers, and certain causative fungi. Phytopathology 30: 363–379.

    Google Scholar 

  • Joffe, J. S., 1922. Preliminary studies on the isolation of sulfur bacteria from sulfur floats-soil composts. Soil Sci. 13: 161–172.

    Google Scholar 

  • Johnson, J. W., 1923. Relationships between hydrogen-ion, hydroxy-ion and salt concentration and the growth of seven soil moulds. Iowa agr. Exp. Sta. Res. Bull. 76: 307–344.

    Google Scholar 

  • Kendrick, W. B., 1962. Soil fungi of a copper swamp. Can. J. Microbiol. 8: 639–647.

    Google Scholar 

  • Kim, M., Y. H. Kim, H. Kim, B. I. Kim, S. M. Byun & T. Uhm, 1994. Thermal stability of an acidic inulinase from Scytalidium acidophilum. Biotech. Lett. 16: 965–966.

    Google Scholar 

  • Kurek, E., 1983. An enzymatic complex active in sulphite and thiosulphate oxidation by Rhodoturula sp. Arch. Mikrobiol. 143: 277–282.

    Google Scholar 

  • Kreger-van Rij, N. J. W., 1998. The Yeasts. Elsevier, Amsterdam, 1055 pp.

    Google Scholar 

  • Lackey, J. B., 1938. The flora and fauna of surface waters polluted by acid mine drainage: Publ. Health Rept. 53: 1499–1507.

    Google Scholar 

  • Latter, P. M., J. B. Cragg & O. W. Heal, 1967. Comparative studies on the microbiology of four moorland soils in the northern Pennines. J. Ecol. 55: 445–464.

    Google Scholar 

  • Linnemann, G., 1941. Die Mucorineen Gattung Mortierella Coemans. Pflanzenforschung 23: 1–64.

    Google Scholar 

  • Middelhoven, W. J., M. Koorevaar & G. W. Schuur, 1992. Degradation of benzene compounds by yeasts in acidic soils. Plant Soil 145: 37–43.

    Google Scholar 

  • Middelhoven, W. J. & F. Spaaij, 1997. Rhodoturula cresolica sp. nov., a cresol assimilating yeast species isolated from soil. Int. J. syst. Bact. 47: 324–327.

    Google Scholar 

  • Morgan, A. P., 1902. A new genus of fungus. J. Mycol. 8: 4–5.

    Google Scholar 

  • Mowll, J. L. & G. M. Gadd, 1984. Cadmium uptake by Aureobasidium pullulans. J. gen. Microbiol. 130: 279–284.

    Google Scholar 

  • Nicolay, K., M. Veenhuis, A. C. Douma & W. Harder, 1987. A 31P NMR study of the internal pH of yeast peroxisomes. Arch. Mikrobiol. 147: 37–41.

    Google Scholar 

  • Nixdorf, B., K. Wollmann & R. Deneke, 1998. Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia, Chapter 8. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, New York, 147–167.

    Google Scholar 

  • Nordstrom, D. K. & G. Southam, 1997. Geomicrobiology of sulfide mineral oxidation, Chapter 11. In Banfield, J. F. & K. H. Nealson (eds), Geomicrobiology: Interactions between Microbes and Minerals. Min. Soc. Am., Rev. Mineral. 35: 360–390.

  • Okamoto, K. & K. Fuwa, 1974. Copper tolerance of a new strain of Penicillium ochro-chloron. Agr. Biol. Chem. 38: 1405–1406.

    Google Scholar 

  • Painter, H. A., 1954. Factors affecting the growth of some fungi associated with sewage production. J. gen. Microbiol. 10: 177–190.

    Google Scholar 

  • Pitt, J. I., 1979. The Genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. AcademicPress, London. 634 pp.

    Google Scholar 

  • Rao, S. S. (ed.), 1989. Acid Stress and Aquatic Microbial Interactions. CRC Press, Boca Raton (FL): 176 pp.

    Google Scholar 

  • Raven, J. A., 1990. Sensing pH? Plant Cell Environ. 13: 721–729.

    Google Scholar 

  • Rawlings, D. E. (ed.), 1997. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, New York: 302 pp.

    Google Scholar 

  • Robbins, E. I., C. A. Cravotta, III, C. E. Savela & G. L. Nord, Jr, 1999. Hydrobiogeochemical interactions in 'anoxic' limestone drains for neutralization of acidic mine drainage. Fuel 78: 259–270.

    Google Scholar 

  • Rossi, G. & A. E. Torma (eds), 1983. Recent Progress in Biohydrometallurgy. Ass. Mineraria Sarda, Iglesias (Italy): 752 pp.

    Google Scholar 

  • Schleper C., G. Pühler, B. Kühlmorgen & L. W. Zillig, 1995. Life at extremely low pH. Nature 375: 741–742.

    Google Scholar 

  • Schwartz, A. & W. Schwartz, 1965. Geomikrobiologische Untersuchungen VII: Ñber das Vorkommen von Mikroorganismen in Solfataren und heißen Quellen. Z. allge. Mikrobiol. 5: 395–405.

    Google Scholar 

  • Sewell, G. W., 1958. The ecology of fungi in Calluna-heathland soils. New Phytol. 58: 5–15.

    Google Scholar 

  • Sigler, L. & J. W. Carmichael, 1974. A new acidophilic Scytalidium. Can. J. Microbiol. 20: 267–268.

    Google Scholar 

  • Simmons, E. G., 1969. Perfect states of Stemphylium. Mycologia 61: 1–26.

    Google Scholar 

  • Sinclair, N. A. & C. M. Herring, 1975. Isolation of Penicillium corylophilum Dierckx from acid mine water and its optimal growth on hydrocarbons at acid pH. Mycopathologia 57: 19–22.

    Google Scholar 

  • Singh, N., 1977. Effect of pH on the tolerance of Penicillium nigricans to copper and other heavy metals. Mycologia 69: 750–755.

    Google Scholar 

  • Sletten, O. & C. E. Skinner, 1948. Fungi capable of growing in strongly acid media and in concentrated copper sulfate solutions. J. Bact. 56: 679–681.

    Google Scholar 

  • Somers, E., 1963. The uptake of copper by fungal cells. Ann. appl. Biol. 51: 425–437.

    Google Scholar 

  • Starkey, R. L., 1973. Effect of pH on tocicity of copper to Scytalidium sp., a copper-tolerant fungus, and some other fungi. J. gen. Microbiol. 78: 217–225.

    Google Scholar 

  • Starkey, R. L. & S. A. Waksman, 1943. Fungi tolerant to extreme acidity and high concentrations of copper sulfate. J. Bact. 45: 509–519.

    Google Scholar 

  • Stokes, P. M. & J. E. Lindsay, 1979. Copper tolerance and accumulation in Penicillium ochro-chloron isolated from copper-plating solution. Mycologia 71: 797–806.

    Google Scholar 

  • Stroo, H. F., T. M. Klein & M. Alexander, 1986. Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus. Appl. environ. Microbiol. 52: 1107–1111.

    Google Scholar 

  • Tansey, M. R. & T. D. Brock, 1973. Dactylaria gallopava, a cause of avian encephalitis, in hot spring effluents, thermal soils and self heated coal waste piles. Nature 242: 202–203.

    Google Scholar 

  • Updegraff, D. M., 1971. Utilization of cellulose from waste paper by Myrothecium verrucaria. Biotech. Bioengng 13: 77–97.

    Google Scholar 

  • Wainwright, M., 1984. Sulphur oxidation by some thermophilous fungi. Trans. br. mycol. Soc. 83: 721–724.

    Google Scholar 

  • Wainwright, M., 1988. Inorganic sulphur oxidation by fungi. In Boddy, L., R. Marchant & J. J. Read (eds), Nitrogen, Phosphorus and Sulphur Utilization by Fungi. Cambridge University Press, Cambridge: 71–88.

    Google Scholar 

  • Wainwright, M. & S. J. Grayston, 1989. Accumulation and oxidation of metal sulphides by fungi, Chapter 8. In Poole, R. K. & G. M. Gadd (eds), Metal-Microbe Interactions. IRL Press at Oxford University, New York: 119–130.

    Google Scholar 

  • Webb, R. W., 1922. Studies in the physiology of the fungi. XV. Germination of certain fungi in relation to hydrogen-ion concentration. Ann. Missouri Bot. Garden 8: 238–241.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, S., Robbins, E.I. Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433, 91–109 (2000). https://doi.org/10.1023/A:1004014603333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004014603333

Navigation