Skip to main content
Log in

An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical production of Fenton's reagent by simultaneous reduction of dioxygen and ferric ions on a carbon felt electrode, permits a controlled, in situ generation of hydroxyl (OH·) radicals. The possibility of using electrochemically produced OH radicals for solving environmental problems is investigated. Continuous and controlled production of hydroxyl radicals was achieved by electrochemical reduction of O2 in the presence of a catalytic amount of ferric or ferrous ion. These radicals are used for remediation of water containing toxic-persistent-bioaccumulative organic pollutants through their transformation into biodegradable compounds or through their mineralization into H2O and CO2. A widely used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was selected as a model for a toxic organic pollutant. High pressure liquid chromatography (HPLC) was used to quantify the distribution of the hydroxylated products obtained. Rate constants for the hydroxylation reactions of 2,4-D, 2,4-dichlorophenol (2,4-DCP), 2,4-dichlororesorcinol (2,4-DCR) and 4,6-dichlororesorcinol (4,6-DCR) were determined. The mineralization of 2,4-D and its derivatives was followed by total organic carbon (TOC) measurements. More than 95% of 2,4-D and the intermediates generated during the electrolysis can be mineralized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Legrini, E. Oliveros and A.M. Braun, Chem. Rev. 93 (1996) 671.

    Google Scholar 

  2. P.M. Bersier, L. Carlsson and J. Bersier, Electrochemistry for a better environnement, in ‘Topics in Current Chemistry, Electro-chemistry, V’ (Springer Verlag, 1994).

  3. J. Gassmann, J. Voss and G. Adiwidjaja, Z. Naturforsch. 50b (1995) 953.

    Google Scholar 

  4. P.L. Cabot, M. Centelles, L. Segarra and J. Casado, J. Electrochem. Soc. 144 (1997) 3749.

    Google Scholar 

  5. S. Stucki, R. Kötz, B. Carcer and W. Suter, J. Appl. Electrochem. 21 (1991) 99.

    Google Scholar 

  6. C. Pulgarin, N. Adler, P. Peringer and Ch. Comninellis, Wat. Res. 28 (1994) 887.

    Google Scholar 

  7. Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.

    Google Scholar 

  8. Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 23 (1993) 108.

    Google Scholar 

  9. N.B. Tahar and A. Savall, J. Electrochem. Soc. 145 (1998) 3427.

    Google Scholar 

  10. O. Kargina, B. MacDougall, Y.M. Kargin and L. Wang, J. Electrochem. Soc. 144 (1997) 3715.

    Google Scholar 

  11. P. Ribordy, C. Pulgarin, J. Kiwi and P. Péringer, Water Sci. Tech. 35 (1997) 293.

    Google Scholar 

  12. E. Brillas, R. Sauleda and J. Casado, J. Electrochem. Soc. 145 (1998) 759.

    Google Scholar 

  13. I.F. Cheng, Q. Fernando and N. Korte, Environ. Sci. Technol. 31 (1998) 1074.

    Google Scholar 

  14. A.I. Tsyganok, I. Yamanaka and K. Otsuka, Chem. Lett. (1988) 303.

  15. Ch. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.

    Google Scholar 

  16. Y.L. Hsiao and K. Nobe, J. Appl. Electrochem. 23 (1993) 943.

    Google Scholar 

  17. O. Koyama, Y. Kamagata and K. Nakamura, Water Res. 28 (1994) 895.

    Google Scholar 

  18. H.J.F. Fenton, J. Chem. Soc. 65 (1894) 8234.

    Google Scholar 

  19. C. Walling, Acc. Chem. Res. 8 (1975) 125.

    Google Scholar 

  20. M.A. Oturan, J. Pinson, D. Deprez and B. Terlain, New J. Chem. 16 (1992) 705.

    Google Scholar 

  21. M.A. Oturan and J. Pinson, J. Phys. Chem. 99 (1995) 13948 and references cited therein.

    Google Scholar 

  22. A. Tsyganok, K. Otsuka, I. Yamanaka, V. Plekhanov and S. Kulikov, Chem. Lett. 4 (1996) 261.

    Google Scholar 

  23. D.C. Coomber, D.J. Tucker and A.M. Bond, J. Electroanal. Chem. 426 (1997) 63.

    Google Scholar 

  24. Y. Sun and J.J. Pignatello, J. Agric. Food Chem. 40 (1992) 322.

    Google Scholar 

  25. R. Bauer and H. Fallmann, Res. Chem. Intermed. 23 (1997) 341.

    Google Scholar 

  26. Y. Sun and J.J. Pignatello, Environ.Sci. Technol. 27 (1993) 304.

    Google Scholar 

  27. L. Sanchez, J. Peral and X. Domenech, Electrochim. Acta 41 (1996) 1981.

    Google Scholar 

  28. M. Trillas, J. Peral and X. Domenech, Appl. Catal. B 5 (1995) 377.

    Google Scholar 

  29. M.A. Oturan, J.J. Aaron, N. Oturan and J. Pinson, Pestic. Sci. 55 (1999) 558.

    Google Scholar 

  30. P. Pichat, J.C. D'Oliveira, J.F. Maffreand and D. Mas, Trace Met. Environ. 3 (1993) 683.

    Google Scholar 

  31. M. Trillas, L. Sanchez, J. Peral and X. Domenech, Proc. Electrochem. Soc. (1994) 290.

  32. E. Camarro and S. Esplugas, J. Chem. Technol. Biotechnol. 57 (1993) 273.

    Google Scholar 

  33. G.S. Kochar and R.S. Kahlon, J. Gen. Appl. Microbiol. 41 (1995) 367.

    Google Scholar 

  34. B. Kuhlmann and B. Kaczmarzcyk, Environ. Toxicol. Water Qual. 10 (1995) 119.

    Google Scholar 

  35. R. Tomat and A. Rigo, J. Appl. Electrochem. 9 (1979) 301.

    Google Scholar 

  36. R. Tomat and A. Rigo, J. Appl. Electrochem. 14 (1984) 1.

    Google Scholar 

  37. T. Tzedakis, A. Savall and M.J. Clifton, J. Appl. Electrochem. 19 (1989) 911 and references cited therein.

    Google Scholar 

  38. G.V. Buxton, C.L. Greenstock, W.P. Helman and A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513.

    Google Scholar 

  39. M.A. Oturan, J. Pinson, J. Bizot, D. Deprez and B. Terlain, J. Electroanal. Chem. 334 (1992) 103.

    Google Scholar 

  40. M.K. Eberhardt and M.L. Martinez, J. Phys. Chem. 79 (1975) 1917.

    Google Scholar 

  41. M.K. Eberhardt, J. Phys. Chem. 81 (1975) 1051.

    Google Scholar 

  42. J.R. Lindsay Smith and R.O.C. Norman, J. Chem. Soc. (1963) 2897.

  43. N.V. Raghavan and S. Steenken, J. Am. Chem. Soc. 102 (1980) 3495.

    Google Scholar 

  44. X-M. Pan, M.N. Schuchmann and C. von Sonntag, J. Chem. Soc. Perkin Trans. 2 (1993) 289.

    Google Scholar 

  45. G. Merga, H-P. Schucmann, B.S. Madhava Rao and C. von Sonntag, J. Chem. Soc. Perkin Trans. 2 (1996) 1097.

    Google Scholar 

  46. A.B. Thomsen, Water Res. 32 (1998) 136.

    Google Scholar 

  47. M.I. Stephan and J.R. Bolton, Environ. Sci. Technol. 32 (1998) 1588.

    Google Scholar 

  48. E. Brillas, R.M. Bastida, E. Llosa and J. Casado, J. Electrochem. Soc. 142 (1995) 1733.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oturan, M. An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. Journal of Applied Electrochemistry 30, 475–482 (2000). https://doi.org/10.1023/A:1003994428571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003994428571

Navigation