Skip to main content
Log in

Distribution of microbial assemblages in the Central Arctic Ocean Basin studied by PCR/DGGE: analysis of a large data set

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Analysis of the biogeographic distributions of bacteria has been limited by potential biases inherent in the isolations required for classical taxonomy and by the time required for phylogenetic analyses. We have attempted to circumvent both of these limitations by using denaturing gradient gel electrophoresis (DGGE) to resolve the products of polymerase chain reaction (PCR) amplifications of mixed template DNA isolated from microbial communities. DGGE separates DNA fragments based on their denaturation characteristics, which vary with the nucleotide sequence of the fragment. The banding patterns in the electropherograms were then subjected to similarity analysis using pattern matching and band comparison software. Replication experiments tested the robustness of band patterns within and between gels. Samples were collected from the Central Arctic Ocean basin during April of 1995 on the SCICEX 95 cruise of the USS Cavalla. One hundred samples collected from a depth of 59 m are the focus of this biogeographical analysis. The band identification algorithm of the software identified between 12 and 30 bands (operational taxonomic units, OTUs) per sample (mean: 21.5) with minimal editing. This number approximately doubled with more extensive editing. Four OTUs seemed to be common to most samples. The samples grouped into five major clusters with similarities greater than approximately 80%. Twenty nine samples in one of these clusters were in two branches with internal similarities greater than approximately 90%. These samples had relatively nondescript banding patterns (numerous bands with roughly equal intensity). Another cluster contained 15 samples with distinctive banding patterns dominated by one or two intense bands. These samples were collected in the same general area of the Arctic Ocean (Canada Basin) and may reflect a community response to local environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bio-Rad Inc., 1992. Molecular Analyst fingerprinting and fingerprinting plus software instruction manual, version 1.0. Bio-Rad Inc. Hercules, CA.

    Google Scholar 

  • DeLaca, T., B. Coakley, T. Boyd & D. Stockwell, 1996. Cruise Report for the SCICEX95 Mission on-board the USS Cavalla. Arctic Research Consortium of the U.S. Inc., Univ. of Alaska, Fairbanks, AK.

    Google Scholar 

  • DeLong, E. F, 1992. Archaea in coastal marine environments. Proc. natn. Acad. Sci. U.S.A. 89: 5685–5689.

    Google Scholar 

  • DeLong, E., D. Franks & A. Alldredge, 1993. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38: 924–934.

    Google Scholar 

  • DeLong, E. F., K. Y. Wu, B. B. Prezelin & R. V. M. Jovine, 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371: 695–697.

    Google Scholar 

  • Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker & J. S. Mattick, 1991. 'Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic acids Res. 19: 4008.

    Google Scholar 

  • Erlich, H., D. Gelfand & J. Sninsky, 1991. Recent advances in the polymerase chain reaction. Science 252: 1643–1651.

    Google Scholar 

  • Farrelly, V., F. A. Rainey & E. Stackebrandt, 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. envir. Microbiol. 61: 2798–2801.

    Google Scholar 

  • Ferguson, R. L., E. N. Buckley & A. V. Palumbo, 1984. Response of marine bacteria to differential filtration and confinement. Appl. envir. Microbiol. 47: 49–55.

    Google Scholar 

  • Ferris, M., G. Muyzer & D. M. Ward, 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. envir. Microbiol. 62: 340–346.

    Google Scholar 

  • Fuhrman, J., K. McCallum & A. A. Davis, 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl. envir. Microbiol. 59: 1294–1302.

    Google Scholar 

  • Giovannoni, S., T. Britschgi, C. L. Moyer & K. G. Field, 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Google Scholar 

  • Guay, C. K. & K. K. Falkner, 1997. Barium as a tracer of Arctic halocline and river waters, Deep Sea Res. II 44: 1543–1569.

    Google Scholar 

  • Hollibaugh, J. T., 1994. Relationship between thymidine metabolism, bacterioplankton community metabolic capabilities, and sources of organic matter. Microb. Ecol. 28: 117–131.

    Google Scholar 

  • Liu, W-T, T. L. Marsh, H. Cheng & L. J. Forney, 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. envir. Microbiol. 63: 4516–4522.

    Google Scholar 

  • Magurran, A. E., 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, 179 pp.

    Google Scholar 

  • Murray, A. E., 1994. Community fingerprint analysis: a molecular method for studying marine bacterioplankton diversity. M.A. Thesis, Department of Biology, San Francisco State University. San Francisco, 128 pp.

    Google Scholar 

  • Murray, A. E., J. T. Hollibaugh & C. Orrego, 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl. envir. Microbiol. 62: 2676–2680.

    Google Scholar 

  • Muyzer, G., E. C. D. Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. envir. Microbiol. 59: 695–700.

    Google Scholar 

  • Muyzer, G., A. Teske, C. O. Wirsen & H. W. Jannasch, 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by dentauring gradient gel electrophoresis of 16S rDNA fragments. Arch. Mikrobiol. 164: 165–172.

    Google Scholar 

  • Myers, R. M., S. G. Fischer, L. S. Lerman & T. Maniatis, 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13: 3131–3145.

    Google Scholar 

  • Pedros-Alio, C., 1993. Diversity of bacterioplankton. Trends Ecol. Evol. 8: 86–90.

    Google Scholar 

  • Reysenbach, A. L., J. Giver, G. S. Wickham & N. R. Pace, 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. envir. Microbiol. 58: 3417–3418.

    Google Scholar 

  • Riemann, L., L. B. Fandino, G. F. Steward, D. C. Smith, H. W. Ducklow & F. Azam, 1998. Variability of bacterial community 68composition in the Arabian Sea during the 1995 JGOFS program. EOS 79: OS 68.

  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis & H. A. Erlich, 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Google Scholar 

  • Santegoeds, C. M., S. C. Nold & D. M. Ward, 1996. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl. envir. Microbiol. 62: 3922–3928.

    Google Scholar 

  • Suzuki, M. T. & S. J. Giovannoni, 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. envir. Microbiol. 62: 625–630.

    Google Scholar 

  • Ward, D. M., R. Weller & M. M. Bateson, 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65.

    Google Scholar 

  • Wawer, C. & G. Muyzer, 1995. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of (NiFe) hydrogenase gene fragments. Appl. envir. Microbiol. 61: 2203–2210.

    Google Scholar 

  • Wawer, C., H. Ruggerberg, G. Meyer & G. Muyzer, 1995. A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments. Nucleic Acids Res. 23: 4928–4929.

    Google Scholar 

  • Wawer, C., M. S. M. Jetten & G. Muyzer, 1997. Genetic diversity and expression of the NiFe hydrogenase large subunit gene of Desulfovibrio spp in environmental samples. Appl. envir. Microbiol. 63: 4360–4369.

    Google Scholar 

  • Wheeler, P. A., M. Gosselin, E. Sherr, D. Thibault, D. L. Kirchman, R. Benner & T. E. Whitledge, 1996. Active cycling of organic carbon in the central arctic ocean. Nature 380: 697–699.

    Google Scholar 

  • Wheeler, P. A., J. M. Watkins & R. L. Hansing, 1997. Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep Sea Res. II. 44: 1571–1592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, V.C., Hollibaugh, J.T. Distribution of microbial assemblages in the Central Arctic Ocean Basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia 401, 55–68 (1999). https://doi.org/10.1023/A:1003773907789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003773907789

Navigation