Skip to main content
Log in

Molecular ecology of aquatic communities: reflections and future directions

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During the 1980s, many new molecular biology techniques were developed, providing new capabilities for studying the genetics and activities of organisms. Biologists and ecologists saw the promise that these techniques held for studying different aspects of organisms, both in culture and in the natural environment. In less than a decade, these techniques were adopted by a large number of researchers studying many types of organisms in diverse environments. Much of the molecular-level information acquired has been used to address questions of evolution, biogeography, population structure and biodiversity. At this juncture, molecular ecologists are poised to contribute to the study of the fundamental characteristics underlying aquatic community structure. The goal of this overview is to assess where we have been, where we are now and what the future holds for revealing the basis of community structure and function with molecular-level information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, R. I., W. Ludwig & K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb. Rev. 59: 143–169

    Google Scholar 

  • Ashelford, K. E., J. C. Fry,M. J. Day, K. E. Hill, M. A. Learner, J. R. Marchesi, C. D. Perkins & A. J. Weightman, 1997. Using microcosms to study gene transfer in aquatic habitats. FEMS Microb. Ecol. 23: 81–94.

    Google Scholar 

  • Azam, F., 1998. Microbial control of oceanic carbon flux: The plot thickens. Science 280: 694–696.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray & L. A. T. F. Meyer-Reil, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Progr. Ser. 10: 257–263

    Google Scholar 

  • Buckley, L., E. Caldarone & T. L. Ong, 1999. RNA:DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401 (Dev. Hydrobiol. 138): 269–281.

    Google Scholar 

  • Bucklin, A., 1995. Molecular markers of zooplankton dispersion in the ocean. Reviews in Geophysics 33: 1165–1175.

    Google Scholar 

  • Bucklin, A., M. Guarnieri, R. S. Hill, A.M. Bentley & S. Kaartvedt, 1999. Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401 (Dev. Hydrobiol. 138): 241–257.

    Google Scholar 

  • Burton, R. S., 1996. Molecular tools in marine ecology. J. exp. mar. Biol. Ecol. 200: 85–101.

    Google Scholar 

  • Caron, D. A., R. J. Gast, E. L. Lim & M. R. Dennett, 1999. Protistan community structure: molecular approaches for answering ecological questions. Hydrobiologia 401 (Dev. Hydrobiol. 138): 217–229.

    Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. Bioscience 38: 764–769.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Google Scholar 

  • Cary, S. C. & S. J. Giovannoni, 1993. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc. natn. Acad. Sci. U. S. A. 90: 5695–5699.

    Google Scholar 

  • Cary, S. C., W. Warren, E. Anderson & S. J. Giovannoni, 1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Molec. mar. Biol. Biotechnol. 2: 51–62.

    Google Scholar 

  • Chen, C. Y., K. B. Sillett, C. L. Folt, S. L. Whittemore & A. Barchowsky, 1999a. Molecular and demographic measures of arsenic stress in Daphnia pulex. Hydrobiologia 401 (Dev. Hydrobiol. 138): 229–238.

    Google Scholar 

  • Chen, F., W. A. Dustman & R. E. Hodson, 1999b. Microscopic detection of the toluene dioxygenase gene and its expression inside bacterial cells in seawater using prokaryotic in situ PCR. Hydrobiologia 401 (Dev. Hydrobiol. 138): 231–240.

    Google Scholar 

  • Coffroth, M. A. & H. R. Lasker, 1998. Population structure of a conal gorgonian coral – the interplay between clonal reproduction and disturbance. Evolution 52: 379–393.

    Google Scholar 

  • Collier, J. L. & L. Campbell, 1999. Flow cytometry in molecular aquatic ecology. Hydrobiologia 401 (Dev. Hydrobiol. 138): 34– 54.

    Google Scholar 

  • Connell, J. H., 1961. Effects of competition, predation by Thais lapillus and other factors on natural populations of barnacles. Ecol. Monogr. 31: 61–104.

    Google Scholar 

  • Cooksey, K. E., 1998. Molecular Approaches to the Study of the Ocean. Chapman and Hall, London, 549 pp.

    Google Scholar 

  • DeLong, E. F., 1998. Molecular phylogenetics: new perspective on the ecology, evolution and biodiversity of marine organisms. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 1–28.

    Google Scholar 

  • DiChristina, T. J. & E. F. DeLong, 1993. Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory ironand manganese-reducing bacterium Shewanella putrefaciens. Appl. envir. Microbiol. 59: 4152–4160.

    Google Scholar 

  • Distel, D. L. & A. P. Wood, 1992. Characterization of the gill symbiont of Thyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J. Bact. 174: 6317–6320.

    Google Scholar 

  • Falkowski, P. G. & J. LaRoche, 1991. Molecular biology in studies of ocean processes. Int. Rev. Cytology. 128: 261–303

    Google Scholar 

  • Ferrari, V. C. & J. T. Hollibaugh, 1999. Distribution of microbial assemblages in the central arctic ocean basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia 401 (Dev. Hydrobiol. 138): 55–68.

    Google Scholar 

  • France, S. C. & T. D. Kocher, 1996. Geographic and bathymeteric patterns of mitochondrial 16S rRNA sequence divergence among deepsea amphipods, Eurythenes gryllus. Mar. Biol. 126: 633–643.

    Google Scholar 

  • Geider, R. J., J. LaRoche, R. M. Greene & M. Olaizola, 1993. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (bacillariophyceae) to nitrate, phosphate or iron starvation. J. Phycol. 29: 755–766.

    Google Scholar 

  • Geller, J. B., 1998. Molecular studies of marine invertebrate biodiversity: status and prospects. In K. E. Cooksey (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 359–376.

    Google Scholar 

  • Gonzalez, J. M., R. E. Hodson & M. A. Moran, 1999. Bacterial populations in replicate marine enrichment cultures: assessing variability in abundance using 16S rRNA-based probes. Hydrobiologia 401 (Dev. Hydrobiol. 138): 69–75.

    Google Scholar 

  • Gordon, D. A. & S. J. Giovannoni, 1996. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Appl. envir. Microbiol. 62: 1171–1177.

    Google Scholar 

  • Graves, J. E., 1998. Molecular insights into the population structures of cosmopolitan marine fishes. J. Heredity 89: 427–437.

    Google Scholar 

  • Gray, N. D. & I. M. Head, 1999. New insights on old bacteria: diversity and function of morphologically conspicuous sulfur bacteria in aquatic systems. Hydrobiologia 401 (Dev. Hydrobiol. 138): 97–112.

    Google Scholar 

  • Grimm, N. B., 1995. Why link species and ecosystems: A perspective from ecosystem ecology. In Jones C. G. & J. H. Lawton (ed.), Linking Species and Ecosystems. Chapman and Hall, New York: 5–15.

    Google Scholar 

  • Hackstein, J. H. P., 1997. Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie Van Leeuwenhoek 72: 63–76.

    Google Scholar 

  • Haig, S. M., 1998. Molecular contributions to conservation. Ecology 7: 413–425.

    Google Scholar 

  • Head, I. M., J. R. Saunders & R. W. Pickup, 1998. Microbial evolution, diversity and ecology – A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbiol. Ecol. 35:1–21.

    Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology. I. Geography, physics and chemistry. John Wiley and Sons, Inc., New York, 1015 pp.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Google Scholar 

  • Jiang, S. C. P. J. H., 1998. Gene transfer by transduction in the marine environment. Appl. envir. Microbiol. 64: 2780–2787.

    Google Scholar 

  • Joint, I., 1995. Molecular Ecology of Aquatic Microbes. Springer, Berlin, 415 pp.

    Google Scholar 

  • Jones, C. G. & J. H. Lawton, 1995. Linking Species and Ecosystems. Chapman and Hall, New York, 387 pp.

    Google Scholar 

  • Kane, M. D., L. K. Poulsen & D. A. Stahl, 1993. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. envir. Microbiol. 59: 682–686.

    Google Scholar 

  • Karouna, N. K. & J. P. Zehr, 1999. Effects of stress on freshwater invertebrate populations of Chironomus tentans: assaying sublethal stress using heat shock protein 70 (HSP-70) expression. Hydrobiologia 401 (Dev. Hydrobiol. 138): 259–268.

    Google Scholar 

  • Kramer, J. G. & F. L. Singleton, 1993. Measurement of rRNA synthesis variations in natural communities of microorganisms on the southeastern U. S. continental shelf. Appl. envir. Microbiol. 59: 2430–2436.

    Google Scholar 

  • Langworthy, D. E., R. D. Stapleton, G. S. Sayler & R. H. Findlay, 1998. Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl. envir. Microbiol. 64: 3422–3428.

    Google Scholar 

  • LaRoche, J., M. L. McKay & P. Boyd, 1999. Immunological and molecular probes to detect phytoplankton responses to environmental stress in nature. Hydrobiologia 401 (Dev. Hydrobiol. 138): 179–200.

    Google Scholar 

  • LaRoche, J., R. J. Geider, L. M. Graziano, H. Murray & K. Lewis, 1993. Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-or nitrogen-deficient conditions. J. Phycol. 29: 767–777.

    Google Scholar 

  • Lin, S. & E. J. Carpenter, 1995. Growth characteristics of marine phytoplankton determined by cell cycle proteins: The cell cycle of Ethmodiscus rex (Bacillariophyceae) in the southwestern North Atlantic Ocean and Caribbean Sea. J. Phycol. 31: 778–785.

    Google Scholar 

  • Lin, S., J. Chang & E. J. Carpenter, 1995. Growth characteristics of phytoplankton determined by cell cycle proteins: PCNA immunostaining of Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 31: 388–395.

    Google Scholar 

  • Lindeman, R. L., 1942. The trophodynamic aspect of ecology. Ecology 23: 399–418.

    Google Scholar 

  • Lyons, M. M., P. Aas, J. D. Pakulski, L. Vanwaasbergen, R. V. Miller, D. L. Mitchell & W. H. Jeffrey, 1998. DNA damage induced by ultraviolet radiation in coral-reef microbial communities. Mar. Biol. 130: 537–543.

    Google Scholar 

  • MacArthur, R. H., 1955. Fluctuations of animal populations and a measure of community stability. Ecology 36: 533–536.

    Google Scholar 

  • May, R. M., 1972. Will a large complex system be stable? Nature 238: 413–414.

    Google Scholar 

  • Medlin, L. K., M. Lange, G. L. A. Barker & P. K. Hayes, 1995. Can molecular techniques change our ideas about the species concept? In Joint I. (ed.), Molecular Ecology of Aquatic Microbes. Springer, Berlin: 133–170.

    Google Scholar 

  • Methé, B. A., W. D. Hiorns & J. P. Zehr, 1998. Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George, NY and six other Adirondack lakes. Limnol. Oceanogr. 43: 368–374.

    Google Scholar 

  • Methé, B. A. & J. P. Zehr, 1999. Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry? Hydrobiologia 401 (Dev. Hydrobiol. 138): 77–96.

    Google Scholar 

  • Miller, S. R., C. E. Wingard & R. W. Castenholz, 1998. Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium, a Synechococcus sp., subjected to high-temperature stress. Appl. envir. Microbiol. 64: 3893–3899.

    Google Scholar 

  • Murray, A. E., J. T. Hollibaugh & C. Orrego, 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl. envir. Microbiol. 62: 2676–2680.

    Google Scholar 

  • Muyzer, G., E. C. De Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. envir. Microbiol. 59: 695–700.

    Google Scholar 

  • Nazaret, S., W. H. Jeffrey, E. Saouter, R. Von Haven & T. Barkay, 1994. merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl. envir. Microbiol. 60: 4059–4065.

    Google Scholar 

  • Neilson, J. W., K. L. Josephson, S. D. Pillai & I. L. Pepper, 1992. Polymerase chain reaction and gene probe detection of the 2,4-dichlorophenoxyacetic acid degradation plasmid, pJP4. Appl. envir. Microbiol. 58: 1271–1275.

    Google Scholar 

  • Nold, S. C. & G. Zwart, 1998. Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32: 17–35.

    Google Scholar 

  • Nübel, U., F. Garcia-Pinchel, M. Kuhl & G. Muyzer, 1999. Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia 401 (Dev. Hydrobiol. 138): 201–208.

    Google Scholar 

  • Ohman, M. D., G. H. Theilacker & S. E. Kaupp, 1991. Immunochemical detection of predation on ciliate protists by larvae of the Northern Anchovy (Engaulis mordax). Biol. Bull. 181: 500–504.

    Google Scholar 

  • Orellana, M. V. & M. J. Perry, 1995. Optimization of an immunofluorescent assay of the internal enzyme ribulose-1,5-bisphosphate carboxylase (RUBISCO) in single phytoplankton cells. J. Phycol. 31: 785–794.

    Google Scholar 

  • Pace, N. R., 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734–740.

    Google Scholar 

  • Pace, N. R., D. A. Stahl, D. J. Lane & G. J. Olsen, 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. microb. Ecol. 9: 1–55.

    Google Scholar 

  • Paine, R. T., 1980. Food webs: linkage, interaction strength and community infra-structure. J. anim. Ecol. 49: 667–686.

    Google Scholar 

  • Palenik, B. & J. A. Koke, 1995. Characterization of a nitrogenregulated protein identified by cell surface biotinylation of a marine phytoplankton. Appl. envir. Microbiol. 61:3311–3315.

    Google Scholar 

  • Palenik, B. & A. M. Wood, 1998. Molecular markers of phytoplankton physiological status and their appliation at the level of individual cells. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 187–206.

    Google Scholar 

  • Palleroni, N. J., 1997. Prokaryotic diversity and the importance of culturing. Antonie Van Leeuwenhoek 72: 3–19.

    Google Scholar 

  • Palumbi, S. R., 1996.What can molecular genetic contribute to marine biogeography? An urchin's tale. J. exp. mar. Biol. Ecol. 203: 75–92.

    Google Scholar 

  • Palumbi, S. R. & F. Cipriano, 1998. Species identification using genetic tools – The value of nuclear and mitochondrial gene sequences in whale conservation. J. Heredity 89: 459–464.

    Google Scholar 

  • Parker, P. G., A. A. Snow, M. D. Schug, G. C. Booton & P. A. Fuerst, 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 92: 361–382.

    Google Scholar 

  • Pernthaler, J., T. Posch, K. Simek, J. Vrba, R. Amann & R. Psenner, 1997. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. envir. Microbiol. 63: 596–601.

    Google Scholar 

  • Pichard, S. L., L. Campbell, J. B. Kang, F. R. Tabita & J. H. Paul, 1996. Regulation of ribulose bisphosphate carboxylase gene expression in natural phytoplankton communities. 1. Diel rhythms. Mar. Ecol. Progr. Ser. 139: 257–265

    Google Scholar 

  • Polz, M., D. Distel, B. Zarda, R. Amann, H. Felbeck, J. Ott & C. Cavanaugh, 1994. Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a mine nematode. Appl. envir. Microbiol. 60: 4461–4467.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience. 24: 499–504.

    Google Scholar 

  • Proctor, L. M., 1997. Advances in the study of marine viruses. Microsc. Res. Techn. 37: 136–161.

    Google Scholar 

  • Richerson, P., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the "paradox of the plankton". Proc. natn. Acad. Sci. U. S. A. 67: 1710–1714.

    Google Scholar 

  • Rowan, R., 1998. Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 34: 407–417.

    Google Scholar 

  • Sayler, G. S., A. Layton, C. Lajoie, J. Bowman, M. Tschantz & J.T. Fleming, 1995. Molecular site assessment and process monitoring in bioremediation and natural attenuation. Appl. Biochem. Biotech. 54: 277–290.

    Google Scholar 

  • Scanlan, D. J. & W. H. Wilson, 1999. Application of molecular techniques to addressing the role of p as key effector in marine ecosystems. Hydrobiologia 401 (Dev. Hydrobiol. 138): 151–177.

    Google Scholar 

  • Schramm, A., L. H. Larsen, N. P. Revsbech, N. B. Ramsing, R. Amann & K. H. Schleifer, 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. envir. Microbiol. 62: 4641–4647.

    Google Scholar 

  • Short, S. M. & C. A. Suttle, 1999. Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities. Hydrobiologia 401 (Dev. Hydrobiol. 138): 19–33.

    Google Scholar 

  • Siegel, D. A., 1998. Resource competition in a discrete environment: Why are plankton distributions paradoxical? Limnol. Oceanogr. 43:1133–1146.

    Google Scholar 

  • Smerdon, G. R., 1998. Towards the molecular analysis of copepod production. In K. E. Cooksey (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 319–328.

    Google Scholar 

  • Sobecky, P. A., 1999. Plasmid ecology of marine sediment microbial communities. Hydrobiologia 401 (Dev. Hydrobiol. 138): 9–18.

    Google Scholar 

  • Sobecky, P. A., T. J. Mincer, M. C. Chang, A. Toukdarian, & D. R. Helinski, 1998. Isolation of broad-host-range replicons from marine sediment bacteria. Appl. envir. Microbiol. 64: 2822–2830.

    Google Scholar 

  • Sobecky, P. A., M. A. Schell, M. A. Moran & R. E. Hodson, 1996. Impact of a genetically engineered bacterium with enhanced alkaline phosphatase activity on marine phytoplankton communities. Appl. envir. Microbiol. 62: 6–12.

    Google Scholar 

  • Steele, J. H., 1974. The structure of marine ecosystems. Harvard University Press, Cambridge, Massachusetts, 128 pp.

    Google Scholar 

  • Suzuki, M., 1997. The effect of protistan bacterivory on bacterioplankton community structure. PhD. Thesis. Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Tilman, D., 1982, Resource competition and community structure. Princeton University Press, Princeton, New Jersey, 296 pp.

    Google Scholar 

  • Urbach, E. & S.W. Chisholm, 1998. Genetic diversity in Prochlorococcus populations flow cytometrically sorted from the Sargasso Sea and Gulf Stream. Limnol. Oceanogr. 43:1615–1630.

    Google Scholar 

  • Vanhannen, E. J., M. P. Vanagterveld, H. J. Gons & H. J. Laanbroek, 1998. Revealing genetic diversity of eukaryotic microorganisms in aquatic environments by denaturing gradient gel electrophoresis. J. Phycol. 34: 206–213.

    Google Scholar 

  • Vanoppen, M. J. H., J. L. Olsen & W. T. Stam, 1995. Genetic variation within and among North Atlantic and Baltic populations of the benthic alga Phycodrys rubens (Rhodophyta). Eur. J. Phycol. 30: 251–260.

    Google Scholar 

  • Voytek, M. A., J. C. Priscu & B. B. Ward, 1999. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401 (Dev. Hydrobiol. 138): 113–130.

    Google Scholar 

  • Voytek, M. A. & B. B. Ward, 1995. Detection of ammoniumoxidizing bacteria in the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. envir. Microbiol. 61: 1444–1450.

    Google Scholar 

  • Wang, X., A. L. DeVries & C. C. Cheng, 1995. Antifreeze peptide heterogeneity in an Antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. Biochim.Biophys. Acta 1247:163–172.

    Google Scholar 

  • Watve, M. G. & R. M. Gangal, 1996. Problems in measuring bacterial diversity and a possible solution. Appl. envir. Microbiol. 62: 4299–4301.

    Google Scholar 

  • Weis, V. M., Kampen, J. V. & R. P. Levine, 1998. Techniques for exploring symbiosis-specific gene expression in cnidarian/algal associations. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 435–448.

    Google Scholar 

  • Williams, H. G., J. Benstead, M. E. Frischer & J. H. Paul, 1997. Alterations in plasmid DNA following natural transformation to populations of marine bacteria. Molecular Marine Biology and Biotechnology 6: 238–247.

    Google Scholar 

  • Zehr, J. P., 1998. Molecular approaches to the study of the activities of marine organisms. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 91–112.

    Google Scholar 

  • Zehr, J. P. & D. G. Capone, 1996. Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment. Microb. Ecol. 32: 263–281.

    Google Scholar 

  • Zehr, J. P. & W. D. Hiorns, 1998. Molecular approaches for studying the activities of marine organisms. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 91–112.

    Google Scholar 

  • Zuccarello, G. C., J. A. West, M. Kamiya & R. J. King, 1999. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia 401 (Dev. Hydrobiol. 138): 209–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehr, J.P., Voytek, M.A. Molecular ecology of aquatic communities: reflections and future directions. Hydrobiologia 401, 1–7 (1999). https://doi.org/10.1023/A:1003763117784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003763117784

Navigation