Skip to main content
Log in

Necessity of Superoxide Production for Development of Etiolated Wheat Seedlings

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It was found that production of superoxide (O2 – ·) is crucial for normal morphogenesis of etiolated wheat seedlings in the early stages of plant development. The development of etiolated wheat seedlings was shown to be accompanied with cyclic changes in the rate of O2 – · production both in the entire intact seedling and in its separated organs (leaf, coleoptile). First increase in the rate of O2 – · production was clearly observed in the period from two to four days of seedling development, then the rate of O2 – · production decreased to the initial level, and then it increased again for two days to a new maximum. An increase in O2 – · production in the period of the first four days of seedling development correlates with an increase in DNA and protein contents in the coleoptile. The second peak of increased rate of O2 – · production observed on the sixth or seventh day of seedling development coincides with a decrease in DNA and protein contents and apoptotic internucleosomal nuclear DNA fragmentation in the coleoptile. Incubation of seedlings in the presence of the antioxidant BHT (ionol) strongly affects their development but it does not influence the increase in DNA and protein contents for the initial four days of seedling life, and it slows down the subsequent age-dependent decrease in protein content and fully prevents the age-dependent decrease in DNA content in the coleoptile. A decrease in the O2 – · amount induced by BHT distorts the seedling development. BHT retards seedling growth, presumably by suppression of cell elongation, and it increases the life span of the coleoptile. It seems that O2 – · controls plant growth by cell elongation at the early stages of seedling development but later O2 – · controls (induces) apoptotic DNA fragmentation and protein disintegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brar, S. S., Kennedy, T. P., Whorton, A. R., Murphy, T. M., Chitano, P., and Hoidal, J. R. (1999) J.Biol.Chem., 274, 20017-20026.

    PubMed  Google Scholar 

  2. Yeh, L. H., Park, Y. J., Hansalia, R. J., Ahmed, I. S., Deshpande, S. S., Goldshmidt-Clermont, P. J., Irani, K., and Alevriadou, B. R. (1999) Am.J.Physiol., 276, 838-847.

    Google Scholar 

  3. Lee, S. L., Wang, W. W., Lanzillo, J., Gillis, C. N., and Fanburg, B. L. (1998) Biochem.Pharmacol., 56, 527-533.

    PubMed  Google Scholar 

  4. Jabs, T. (1999) Biochem.Pharmacol., 57, 231-245.

    PubMed  Google Scholar 

  5. Jabs, T., Dietrich, R. A., and Dangl, J. (1996) Science, 273, 1853-1856.

    PubMed  Google Scholar 

  6. Levine, A., Pennell, R. I., Alvarez, M. E., Palmer, R., and Lamb, C. (1996) Curr.Biol., 6, 427-437.

    PubMed  Google Scholar 

  7. Mittler, R., and Lam, E. (1996) Trends Microbiol., 4, 10-15.

    PubMed  Google Scholar 

  8. Jacobson, M. D., and Raff, M. (1995) Nature, 374, 814-816.

    Article  PubMed  Google Scholar 

  9. Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H., and Tsujimoto, Y. (1995) Nature, 374, 811-813.

    PubMed  Google Scholar 

  10. Salgo, M. G., and Pryor, W. A. (1996) Arch.Biochem.Biophys., 333, 482-488.

    PubMed  Google Scholar 

  11. Mittler, R., Feng, X., and Cohen, M. (1998) Plant Cell., 10, 461-473.

    PubMed  Google Scholar 

  12. Kirnos, M. D., Aleksandrushkina, N. I., Shorning, B. Yu., Kudryashova, I. B., and Vanyushin, B. F. (1999) Fiziol.Rast., 46, 38-46.

    Google Scholar 

  13. Kirnos, I. D., Volkova, S. A., Ganicheva, N. I., Kudryashova, I. B., and Vanyushin, B. F. (1983) Biokhimiya, 48, 1587-1595.

    Google Scholar 

  14. May, M. J., Hammond-Kosack, K. E., and Jones, D. G. (1996) Plant Physiol., 110, 1367-1379.

    PubMed  Google Scholar 

  15. Auclair, C., and Voisin, E. (1987) in Handbook of Methods for Oxygen Radical Research (Greenwald, R. A., ed.) CRC Press, Boca Raton, pp. 123-132.

    Google Scholar 

  16. Kirnos, M. D., Aleksandrushkina, N. I., and Vanyushin, B. F. (1981) Biokhimiya, 46, 1458-1474.

    Google Scholar 

  17. Bradford, M. M. (1976) Anal.Biochem., 72, 248-254.

    Article  PubMed  Google Scholar 

  18. Walker, P. R., and Sikorska, M. (1997) Biochem.Cell Biol., 75, 287-299.

    PubMed  Google Scholar 

  19. Koukalova, B., Kovarik, A., Fajkus, J., and Siroky, J. (1997) FEBS Lett., 414, 289-292.

    PubMed  Google Scholar 

  20. Kirnos, M. D., Aleksandrushkina, N. I., Shorning, B. Yu., Bubenshchikova, S. N., and Vanyushin, B. F. (1997) Biochemistry (Moscow), 62, 1587-1597(Russ).

    Google Scholar 

  21. Bakeeva, L. E., Kirnos, M. D., Aleksandrushkina, N. I., Kazimirchyuk, S. B., Shorning, B. Yu., Zamyatnina, V. A., Yaguzhinsky, L. S., and Vanyushin, B. F. (1999) FEBS Lett., 457, 122-125.

    PubMed  Google Scholar 

  22. Lippman, R. D. (1981) J.Gerontol., 36, 550-557.

    PubMed  Google Scholar 

  23. Harman, D. (1992) Mutat.Res., 275, 257-266.

    PubMed  Google Scholar 

  24. Sharma, S. P., and Wadhwa, R. (1983) Mech.Ageing Dev., 23, 67-71.

    PubMed  Google Scholar 

  25. Emanuel, N. M. (1976) Q.Rev.Biophys., 9, 283-308.

    PubMed  Google Scholar 

  26. Ferreira, J., Coloma, L., Fones, E., Letelier, M. E., Repetto, Y., Morello, A., and Aldunate, J. (1988) FEBS Lett., 234, 485-488.

    PubMed  Google Scholar 

  27. Bolton, J. L., and Thompson, J. A. (1991) Drug.Metab.Dispos., 19, 467-472.

    PubMed  Google Scholar 

  28. Shorning, B. Yu., Poleshchyuk, S. V., Gorbatenko, I. Yu., and Vanyushin, B. F. (1999) Izv.RAN.Ser.Biol., 26, 30-38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shorning, B.Y., Smirnova, E.G., Yaguzhinsky, L.S. et al. Necessity of Superoxide Production for Development of Etiolated Wheat Seedlings. Biochemistry (Moscow) 65, 1357–1361 (2000). https://doi.org/10.1023/A:1002892520658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002892520658

Navigation