Skip to main content
Log in

Infection of clover by plant growth promoting Pseudomonas fluorescens strain 267 and Rhizobium leguminosarum bv. trifolii studied by mTn5-gusA

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Plant growth promoting Pseudomonas fluorescens strain 267, isolated from soil, produced pseudobactin A, 7-sulfonic acid derivatives of pseudobactin A and several B group vitamins. In coinoculation with Rhizobium leguminosarum bv. trifolii strain 24.1, strain 267 promoted clover growth and enhanced symbiotic nitrogen fixation under controlled conditions. To better understand the beneficial effect of P. fluorescens 267 on clover inoculated with rhizobia, the colonization of clover roots by mTn5-gusA marked bacteria was studied in single and mixed infections under controlled conditions. Histochemical assays combined with light and electron microscopy showed that P. fluorescens 267.4 (i) efficiently colonized clover root surface; (ii) was heterogeneously distributed along the roots without the preference to defined root zone; (iii) formed microcolonies on the surface of clover root epidermis; (iv) penetrated the first layer of the primary root cortex parenchyma and (v) colonized endophytically the inner root tissues of clover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown CM & Dilworth M (1975) Ammonia assimilation by Rhizobium cultures and bacteroids. J. Gen. Microbiol. 86:39–48

    Google Scholar 

  • Budzikiewicz H, Fuchs R, Taraz K, Marek-Kozaczuk M & Skorupska A (1998) Dihydropyoverdin-7–sulfonic acids-unusual bacterial metabolites. Natur. Prod. Lett. 12(2):125–130

    Google Scholar 

  • Burdman S, Sarig S, Kigel J & Okon Y (1996) Field inoculation of common bean (Phaseolus vulgaris L.) and chick pea (Cicer arietinum L.) with Azospirillum brasilense strain Cd. Symbiosis 21:41–48

    Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij AJ & Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Molec. Plant-Microbe Interact. 10:79–86

    Google Scholar 

  • Dashti N, Zhang F, Hynes R & Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil200:205–213

    Google Scholar 

  • De Freitas JR, Gupta VVSR & Germida JJ (1993) Influence of Pseudomonas syringae R25 and Pseudomonas putida R105 on the growth and nitrogen fixation (acetylene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.). Biol. Fertil. Soils 16:215–220

    Google Scholar 

  • Deryło M & Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil154:211–217

    Google Scholar 

  • Fisher RF & Long SR (1992) Rhizobium-plant signal exchange. Nature357:655–660

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth free-living bacteria. Can. J. Microbiol. 41:109–117

    Google Scholar 

  • Grimes HD & Mount MS (1984) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol. Biochem. 16:27–30

    Google Scholar 

  • Hallmann J, Quandt-Hallmann A, Mahaffee WF & Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895–914

    Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M. & Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J. Bacteriol.176:1913–1923

    Google Scholar 

  • Itzigsohn R, Kapulnik Y, Okon Y & Dovrat A (1993) Physiological and morphological aspects of interaction with Azospirillum brasilense. Can. J. Microbiol. 39:610–615

    Google Scholar 

  • Jefferson RA, Kavanagh TA & Bevan MW (1987) GUS fusions, _-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907

    Google Scholar 

  • Kapulnik Y (1991) Plant-growth-promoting rhizobacteria. In: Waisel Y, Eshel, A. & Kafkafi U (Eds.) Plant roots, the hidden half (pp 717–729). Marcel Dekker, New York

    Google Scholar 

  • Kloepper JW & Schroth MN (1981) Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71:642–644

    Google Scholar 

  • Lazarovitz G & Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. HortScience 32:188–192

    Google Scholar 

  • Li D & Alexander M (1988) Co-inoculation with antibioticproducing bacteria to increase colonization and nodulation by rhizobia. Plant Soil108:211–219

    Google Scholar 

  • Loper JE, Suslow TV & Schroth MN (1984) Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology 74:1454–1460

    Google Scholar 

  • Marek-Kozaczuk M, Deryło M & Skorupska A (1996) Tn5 insertion mutants of Pseudomonas sp. 267 defective in siderophore production and their effect on clover (Trifolium pratense) nodu11 lated with Rhizobium leguminosarum bv. trifolii. Plant Soil179:269–274

    Google Scholar 

  • Mylona P, Pawlowski K & Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885

    Google Scholar 

  • Newman EI & Bowen HJ (1974) Patterns of distribution of bacteria on root surfaces. Soil Biol. Biochem. 6:205–209

    Google Scholar 

  • Oliveira A, Ferreira EM & Pampulha ME (1997) Nitrogen fixation, nodulation and yield of clover plants co-inoculated with rootcolonizing bacteria. Symbiosis 23:35–42

    Google Scholar 

  • O'Sullivan DJ & O'Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56:662–676

    Google Scholar 

  • Płazinski J & Rolfe BG (1985) Influence of Azospirillum strains on the nodulation of clover by Rhizobium strains. Appl. Environ. Microbiol. 49:984–989

    Google Scholar 

  • Quadt-Hallmann A, Hallmann J & Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plantassociated bacteria. Can. J. Microbiol. 43:254–259

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis TA (1989) Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

  • Sarig S, Kapulnik Y & Okon Y (1986) Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil 90:335–342

    Google Scholar 

  • Sessitsch A, Hardarson G, de Vos WM & Wilson KJ (1998) Use of marker genes in competition studies of Rhizobium. Plant Soil204:35–45

    Google Scholar 

  • Streit WR, Joseph CM & Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol. Plant-Microbe Interact. 5:330–338

    Google Scholar 

  • Sturz AV & Christie BR (1995) Endophytic bacterial systems governing red clover growth and development. Ann. Appl. Biol.126:285–290

    Google Scholar 

  • Sturz AV, Christie BR, Matheson BG & Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fertil. Soils 25:13–19

    Google Scholar 

  • van Peer R, Punte HLM, de Weger LA & Schippers B (1990) Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization on roots. Appl. Environ. Microbiol. 56:2462–2470

    Google Scholar 

  • Vasse J, deBilly F, Camut S & Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol.172:4295–4306

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the rootnodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wilson KJ, Sessitsch A, Corbo JCC, Giller KE, Akkerman ADL & Jefferson RA (1995) _-glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gramnegative bacteria. Microbiology 141:1691–1705

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Skorupska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marek-Kozaczuk, M., Kopcińska, J., Łotocka, B. et al. Infection of clover by plant growth promoting Pseudomonas fluorescens strain 267 and Rhizobium leguminosarum bv. trifolii studied by mTn5-gusA. Antonie Van Leeuwenhoek 78, 1–11 (2000). https://doi.org/10.1023/A:1002619824691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002619824691

Navigation