Skip to main content
Log in

Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Here, the state of the art of the application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology will be presented. Furthermore, the potentials and limitations of these techniques will be discussed, and it will be indicated why their use in ecological studies has become so important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akkermans DL, van Elsas JD & de Bruijn FJ (1995) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Amann RI, Stromley J, Devereux R, Key R & Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58: 614-623

    Google Scholar 

  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situdetection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169

    Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW & Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609-1613

    Google Scholar 

  • Borneman J, Skroch PW, O'Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J & Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62: 1935-1943

    Google Scholar 

  • Brinkhoff T & Muyzer G (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospiraspp. Appl. Environ. Microbiol. 63: 3789-3796

    Google Scholar 

  • Brunk CF, Avaniss-Aghajani E & Brunk CA (1996) A computer analysis of primer and probe hybridization potential with small-subunit rRNA sequences. Appl. Environ. Microbiol. 62: 872-879

    Google Scholar 

  • Buchholz-Cleven BEE, Rattunde B & Straub KL (1997) Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst. Appl. Microbiol. 20: 301-309

    Google Scholar 

  • Cariello NF, Keohavong P, Sanderson BJS & Thilly WG (1988) DNA damage produced by ethidium bromide staining and exposure to ultraviolet light. Nucleic Acids Res. 16: 4157

    Google Scholar 

  • Cairns MJ & Murray V (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17: 915-919

    Google Scholar 

  • Donner G, Schwarz K, Hoppe HG & Muyzer G (1996) Profiling the succession of bacterial populations in pelagic chemoclines. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48: 7-14

    Google Scholar 

  • Farrelly V, Rainey FA & Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798-2801

    Google Scholar 

  • Ferris MJ, Muyzer G & Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346

    Google Scholar 

  • Ferris MJ, Nold SC, Revsbech NP & Ward NM (1997) Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl. Environ. Microbiol. 63: 1367-1374

    Google Scholar 

  • Ferris MJ & Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381

    Google Scholar 

  • Felske A, Engelen B, Nübel U & Backhaus H (1996) Direct ribosomal isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 4162-4167

    Google Scholar 

  • Felske A, Wolterink A, van Lis R & Akkermans ADL (1998) Screening for dominant bacterial 16S rRNA sequences in soil. Antonie van Leeuwenhoek, in press

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbiosis in marine invertebrates. Rev. Aquat. Sci. 2: 399-436

    Google Scholar 

  • Fischer SG & Lerman LS (1979) Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell 16: 191-200

    Google Scholar 

  • Fischer SG & Lerman LS (1983) DNA fragments differing by single basepair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80: 1579-1583

    Google Scholar 

  • Führ A (1996) Untersuchungen zu der Biodiversität natürlicher Bakterienpopulationen im Boden mit der denaturierenden Gradientengelelectrophorese (DGGE) von 16S rDNA-Sequenzen. PhD-thesis Universitat Kaiserslautern, Kaiserslautern, Germany

    Google Scholar 

  • Fuhrman JA, McCallum K & Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59: 1294-1302

    Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L & Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastesto be a cosmopolitan cyanobacterium. Appl. Environ. Microbiol. 62: 3284-3291

    Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, & Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 344: 60-63

    Google Scholar 

  • Grey JP & Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62: 4049-4059

    Google Scholar 

  • Heuer H, Hartung K, Engelen B & Smalla K (1995) Studies on microbial communities associated with potato plants by BIOLOG and TGGE patterns. Med. Fac. Landbouww. Univ. Gent 60/4b: 2639-2645

    Google Scholar 

  • Heuer H & Smalla K. (1997) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In: van Elsas JD, Trevors JT & Wellington EMH (Eds) Modern Soil Microbiology. Marcel Dekker, New York. pp. 353-373

    Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K & Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233- 3241

    Google Scholar 

  • Höfle MG (1988) Identifcation of bacteria by low molecular weight RNA profiles: a new chemotaxonomic approach. J. Microbiol. Meth. 8: 235-248

    Google Scholar 

  • Höfle MG (1990) Transfer RNAs as genotypic fingerprints of eubacteria. Arch. Microbiol. 153: 299-304

    Google Scholar 

  • Holben WE, Calabrese VGM, Harris D, Ka JO & Tiedje JM (1993) Analysis of structure and selection in microbial communities by molecular methods. In: Guerrero R & Pedrós-Alió C (Eds) Trends in Microbial Ecology, pp. 367-370

  • Holben WE & Harris D (1995) DNA-based monitoring of total bacterial community structure in environmental samples. Molecular Ecology 4: 627-631

    Google Scholar 

  • Hollibaugh JT (1994) Relationship between thymidine metabolism bacterioplankton community metabolic capabilities and sources of organic matter used for growth. Microb. Ecol. 28: 117-131

    Google Scholar 

  • Jaspers E & Overmann J (1997) Separation of bacterial cells by isoelectric focusing, a new method for analysis of complex microbial communities. Appl. Environ. Microbiol. 63: 3176-3181

    Google Scholar 

  • Jeffrey WH, Nazaret S & Barkay T (1996) Detection of the merAgene and its expression in the environment. Microb. Ecol. 32: 293-303

    Google Scholar 

  • Jensen MA & Straus N (1993) Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Applic. 3: 186-194

    Google Scholar 

  • Karkhoff-Schweizer RR, Huber DPW, & Voordouw G (1995) Conservation of the genes for the dissimilatory sulfite reductase from Desulfovibrio vulgarisand Archaeoglobus fulgidusallows their detection by PCR. Appl. Envrion. Microbiol. 61: 290-296

    Google Scholar 

  • Keohavong P & Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc. Natl. Acid. Sci. USA 86: 9253-9257

    Google Scholar 

  • Komatsoulis GA & Waterman MS (1997) A new computational method for detection of chimeric 16S rRNA artifacts generated by PCR amplification from mixed bacterial populations. Appl. Environ. Microbiol. 63: 2338-2346

    Google Scholar 

  • Kopczynski ED, Bateson Mm & Ward DM (1994) Recognition of chimeric small-subunit ribosomal DNAs composed from genes from uncultivated microorganisms. Appl. Environ. Microbiol. 60: 746-748

    Google Scholar 

  • Kowalchuk GA, Stephen JR, de Boer W, Prosser JI, Embley TM & Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the β-subdivision of the class Proteobacteriain coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489-1497

    Google Scholar 

  • Lee D-H, Zo Y-G & Kim S-J (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-Single-Strand-Conformation Polymorphism. Appl. Environ. Microbiol. 62: 3112-3120

    Google Scholar 

  • Lerman LS & Silverstein K (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymology 155: 482-501

    Google Scholar 

  • Liesack W, Weyland H & Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed culture of strict barophilic bacteria. Microb. Ecol. 21: 191-198

    Google Scholar 

  • Liesack W & Stackebrandt E (1992) Occurence of novel groups of the domain Bacteriaas revealed by analysis of genetic material isolated from an Austalian terrestrial environment. J. Bacteriol. 174: 5072-5078

    Google Scholar 

  • Liesack W, Janssen PH, Rainey FA, Ward-Rainey NL & Stackebrandt E (1997) Microbial diversity in soil: The need for a combined approach using molecular and cultivation techniques. In: van Elsas JD, Trevors JT & Wellington EMH (Eds) Modern Soil Microbiology. Marcel Dekker, New York. pp. 375-439

    Google Scholar 

  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ & Woese CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res. 25: 109-110

    Google Scholar 

  • Martínez-Murcia AJ, Acinas SG & Rodriguez-Valera F (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiology Ecology 17: 247-256

    Google Scholar 

  • Massol-Deya AA, Odelson DA, Hickey RF & Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal gene sequences and restriction endonuclease analysis (ARDRA). In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds) Molecular Microbial Ecology Manual (3.3.2: pp. 1-8) Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • McCaig AE, Embley TM & Prosser JI (1994) Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiology Letters 120: 363-368

    Google Scholar 

  • Moyer CL, Dobbs FC & Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60: 871-879

    Google Scholar 

  • Moyer CL, Dobbs FC & Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61: 1555-1562

    Google Scholar 

  • Moyer CL, Tiedje JM, Dobbs FC & Karl DM (1996) A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: Efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl. Environ. Microbiol. 62: 2501-2507

    Google Scholar 

  • Murray AE, Hollibaugh JT & Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient electrophoresis of 16S rDNA fragments. Appl. Environ. Microbiol. 62: 2676-2680

    Google Scholar 

  • Muyzer G, de Waal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700

    Google Scholar 

  • Muyzer G & deWaal EC (1994) Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rRNA. NATO ASI Series G35: 207-214

    Google Scholar 

  • Muyzer G, Teske A, Wirsen CO & Jannasch HW (1995) Phylogenetic relationships of Thiomicrospiraspecies and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-171

    Google Scholar 

  • Muyzer G & Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Wat. Sci. Tech. 32: 1-9

    Google Scholar 

  • Muyzer G, Hottenträger S, Teske A & Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA - A new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds) Molecular Microbial Ecology Manual (3.4.4: pp. 1-23) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H & Wawer C (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds) Molecular Microbial Ecology Manual (3.4.4: pp. 1-27) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Myers RM, Fischer SG, Lerman LS & Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13: 3131-3145

    Google Scholar 

  • Myers RM, Maniatis T & Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155: 501-527

    Google Scholar 

  • Myers RM, Sheffield VC & Cox DR (1989) Mutation detection by PCR, GC-clamps, and denaturing gradient gel electrophoresis. In: Erlich HA (Ed) PCR-Technology- Principles and Applications for DNA amplification (pp. 71-88) Stockton Press, New York

    Google Scholar 

  • Neefs J, van de Peer Y, Hendriks L & de Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acid Res. 18: 2237-2242

    Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W & Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxadetected by temperature gradient gel electrophoresis. J Bacteriol. 178: 5636-5643

    Google Scholar 

  • Nübel U, Garcia-Pichel F & Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332

    Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ & Pace NR (1986) Microbial ecology and evolution: a ribosomal approach. Ann. Rev. Microbiol. 40: 337-365

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K & Sekiya T (1989) Detection of polymorphisms of human DNAby gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86: 2766-2770

    Google Scholar 

  • Øvreas L, Castberg T & Torsvik V (1995) Analysis of natural microbial communities using reassociation of total DNA in combination with bisbenzimide density gradients and DGGE. In: Smalla K & Muyzer G, (Eds) Proceedings of the workshop on Application of DGGE and TGGE in Microbial Ecology

  • Pace NA, Stahl DA, Lane DJ & Olsen G (1986) The analysis of natural microbial populations by ribosomal RNAsequences. Adv. Microb. Ecol. 9: 1-55

    Google Scholar 

  • Paul JH (1996) Carbon cycling: molecular regulation of photosynthetic carbon fixation. Microb. Ecol. 32: 231-245

    Google Scholar 

  • Priemé A, Sitaula JIB, Klemedtsson AK & Bakken LR (1996) Extraction of methane-oxidizing bacteria from soil particles. FEMS Microbiol. Ecol. 21: 59-68

    Google Scholar 

  • Rainey FA, Ward N, Sly LI, & Stackebrandt E (1994) Dependence on the taxon composition of clone libraries for PCR amplified, naturally ocurring 16S rDNA, on the primer pair and the cloning system. Experientia 50: 796-797

    Google Scholar 

  • Raskin L, Zheng D, Griffin ME, Stroot PG & Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie van Leeuwenhoek 68: 297-308

    Google Scholar 

  • Reysenbach A-L, Giver LJ, Wickham GS, & Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58: 3417-3418

    Google Scholar 

  • Riesner D, Henco K & Steger G (1991) Temperature-gradient gel electrophoresis: a method for the analysis of conformational transitions and mutations in nucleic acids and proteins. In: Advances in Electrophoresis 4: 169-250

    Google Scholar 

  • Robison-Cox JF, Bateson MM & Ward DM (1995) Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences. Appl. Environ. Microbiol. 61: 1240-1245

    Google Scholar 

  • Rochelle PA, Cragg BA, Fry JC, Parkes RJ & Weightman AJ (1994) Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecology 15: 215-226

    Google Scholar 

  • Rölleke S, Muyzer G, Wawer C, Wanner G & Lubitz W (1996) Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA fragments. Appl. Environ. Microbiol. 62: 2059-2065

    Google Scholar 

  • Rosenbaum V & Riesner D (1987) Temperature-gradient gel electrophoresis; thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys. Chem. 26: 235-246

    Google Scholar 

  • Rosset R, Julien J & Monier R (1966) Ribonucleic acid composition of bacteria as a function of growth rate. J. Mol. Biol. 18: 308-320

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel SJ, Scharf SJ, Higuchi R, Horn GT, Mullis KB & Erlich HA (1988) Primer-directed enzymatic amplifcation of DNA with thermostable DNA polymerase. Science 239: 487-491

    Google Scholar 

  • Santegoeds CM, Nold SC & Ward DM (1996) Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria froma hot spring cyanobacterial mat. Appl. Environ. Microbiol. 62: 3922-3928

    Google Scholar 

  • Santegoeds CM, Muyzer G & de Beer D (1997) Successional processes in a bacterial biofilm determined with microsensors and molecular techniques. In: Proceeding International Symposium Environmental Biotechnology '97, pp. 77-82

  • Schäfer H (1997) Sukzessive Veränderungen der Diversität mariner, mikrobieller Populationen, bestimmt durch 16S rDNA Klonbibliotheken und denaturierende Gradienten Gelelektrophorese (DGGE). Diplomthesis, Universität Bremen, Bremen, Germany

    Google Scholar 

  • Scheinert P, Krausse R, Ullmann U, Söller R & Krupp G (1996) Molecular differentiation of bacteria by PCR amplification of the 16S-23S rRNA spacer. J. Microbiol. Meth. 26: 103-117

    Google Scholar 

  • Sen WH & Hohn B (1992) DMSO improves PCR amplification of DNA with complex secondary structure. Trends in Genetics 8: 227

    Google Scholar 

  • Sheffield VC, Cox DR & Myers RM (1989) Attachment of a 40-bp G+C rich sequence (GC-clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86: 232-236

    Google Scholar 

  • Sheffield VC, Beck JS, Stone EM & Myers RM (1992) A simple and efficient method for attachment of a 40-base pair, GC-rich sequence to PCR-amplified DNA. BioTechniques 12: 386-387

    Google Scholar 

  • Silva MC & Batt CA (1995) Effect of cellular physiology on PCR amplification efficiency. Molecular Ecology 4: 11-16

    Google Scholar 

  • Sinigalliano CD, Kuhn DN & Jones RD (1995) Amplification of the amoAgene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl. Environ. Microbiol. 61: 2702-2706

    Google Scholar 

  • Smith E, Leeflang P & Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology 23: 249-261

    Google Scholar 

  • Smith KT, Long CM, Bowman B & Manos MM (1990) Using cosolvents to enhance PCR amplification. Amplifications 5: 16-17

    Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR & Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084

    Google Scholar 

  • Suzuki MT & Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630

    Google Scholar 

  • Teske A, Wawer C, Muyzer G & Ramsing NB (1996a) Distribution of sulfate-reducing bacteria in a stratified Fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62: 1405-1415

    Google Scholar 

  • Teske A, Sigalevich P, Cohen Y & Muyzer G (1996b) Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl. Environ. Microbiol. 62: 4210-4215

    Google Scholar 

  • Teske A (1995) Phylogenetische und Ökologische Untersuchungen an Bakterien des oxidativen und reduktiven marinen Schwefelkreislaufs mittels ribosomaler RNA. PhD-thesis. University Bremen, Bremen, Germany

    Google Scholar 

  • Torsvik V, Goksoyr J & Daale FL (1990a) High diversity in DNA of soil bacteria. Appl. Envrion. Microbiol. 56: 782-787

    Google Scholar 

  • Torsvik V, Salte K, Sorkeim R & Goksoyr J (1990b) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56: 776-781

    Google Scholar 

  • Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G & Soulas G (1997) Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology 24: 279-285

    Google Scholar 

  • Varadaraj K & Skinner DM (1994) Denaturants or cosolvents improve the specificity of PCR amplification of a G+C-rich DNA using genetically engineered DNA polymerases. Gene 140: 1-5

    Google Scholar 

  • Voytek MA & Ward BB (1995) Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteriain aquatic samples with the PCR. Appl. Environ. Microbiol. 61: 1444-1450

    Google Scholar 

  • Ward DM, Weller R & Bateson Mm (1990) 16S rRNA sequences reveal numerous uncultivated microorganisms in a natural environment. Nature 345: 63-65

    Google Scholar 

  • Ward DM, Bateson MM, Weller R & Ruff-Roberts (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microb. Ecol. 12: 219-286

    Google Scholar 

  • Ward DM, Santegoeds CM, Nold SC, Ramsing NB, Ferris MJ & Bateson MM (1996) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie van Leeuwenhoek 71: 143-150

    Google Scholar 

  • Wawer C & Muyzer G (1995) Genetic diversity of Desulfovibriospp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Environ. Microbiol. 61: 2203-2210

    Google Scholar 

  • Wawer C, Rüggeberg H, Meyer G & Muyzer G (1995) A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments. Nucleic Acids Res. 23: 4928-4929

    Google Scholar 

  • Wawer C (1996) Molekularbiologische Charakterisierung von sulfatreduzierenden Bakterien in Umweltproben unter den Aspekten Diversität und Aktivität. PhD-thesis, University Bremen, Bremen, Germany

    Google Scholar 

  • Wawer C, Jetten M.S.M. & Muyzer G (1997) Genetic diversity and expression of the [NiFe] hydrogenase large subunit gene of Desulfovibriospp. in environmental samples. Appl. Environ. Microbiol. 63: 4360-4369

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP & Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464

    Google Scholar 

  • Weller R, Weller JW & Ward DM (1991) 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl. Environ. Microbiol. 57: 1146-1151

    Google Scholar 

  • Wheeler Alm E & Stahl DA (1996) Extraction of microbial DNA from aquatic sediments. In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds.) Molecular Microbial Ecology Manual (1.1.5: pp.1-29) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Wichels A (1996) Untersuchungen zur Diversität mariner Bakteriophagen und zu ihrer Verbreitung in der Nordsee. PhD-thesis, University Hamburg, Hamburg, Germany

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA & Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18: 6531-6535.

    Google Scholar 

  • Xia X, Bollinger J & Ogram A (1995) Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Molecular Ecology 4: 17-28

    Google Scholar 

  • Zwart G, Huismans R, van Agterveld M, van de Peer Y, de Rijk P, Eenhoorn H, Muyzer G, van Hannen E, Gons H & Laanbroek R (1997) Divergent members of the bacterial division Verrucomicrobialesin a temperate freshwater lake. FEMS Microbiology Ecology, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muyzer, G., Smalla, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73, 127–141 (1998). https://doi.org/10.1023/A:1000669317571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000669317571

Navigation