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Abstract

A variety of substituted benzotriazoles have been prepared by the [3 + 2] cycloaddition of azides
to benzynes. The reaction scope is quite general, affording a rapid and easy entry to substituted,
functionalized benzotriazoles under mild conditions.

Recent years have seen rapid development of the Cucatalyzed [3 + 2] cycloaddition1

reaction between terminal alkynes and azides, commonly referred to as “click chemistry”.2

Such chemistry has found wide applications not only in synthetic organic chemistry3 but
also in dendrimer and polymer chemistry,4 the material sciences,5 bioconjugation
chemistry,6 and the pharmaceutical sciences.7

Although there have been several reports on the annulation of arynes by azides,8 efforts to
modernize this reaction are certainly necessary. Early examples utilizing potentially
explosive diazotized anthranilic acid as the benzyne precursor8a–c suffer from the use of a
potentially explosive reagent and dangerous reaction conditions, and more recent examples
utilizing o-(trimethylsilyl)aryliodonium salts8e,f suffer from the limited availability and
difficulties in preparation of these reagents. Nowadays, arynes are more readily and
conveniently generated in situ by the fluoride-promoted ortho-elimination of commercially
available or easily prepared o-(trimethylsilyl)aryl triflates.9 Arynes generated in this way
retain their high reactivity toward nucleophilic additions and annulations.10

With our recent success in the development of benzyne annulation chemistry,11 particularly
the [3 + 2] cycloaddition reaction between benzynes and diazo compounds,11a,12 we
envisioned the [3 + 2] annulation of benzynes by azides as a very promising extension of the
current click chemsitry. Such chemistry should not only expand the scope and utility of the
present click chemistry but also potentially provide a rapid entry to substituted,
functionalized benzotriazoles, which are known to possess important biological activity13

and exhibit utility as synthetic auxiliaries.14 Herein, we report our preliminary results on the
[3 + 2] annulation reaction of benzynes and azides, new benzyne click chemistry.
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We started our investigation using commercially available benzyl azide (1a) and o-
(trimethylsilyl)phenyl triflate (2a) under a variety of different reaction conditions (Table 1).
TBAF and CsF were chosen as fluoride sources, and the reaction was examined in several
dipolar aprotic solvents. While most reaction conditions gave low yields (entries 1–4), the
reaction carried out in acetonitrile using CsF as the fluoride source afforded a superior yield
of 76% (entry 5). These optimized conditions are identical to the optimal conditions
observed previously by us for the synthesis of indazoles by the cycloaddition of diazo
compounds to arynes.11a We have thus chosen these conditions as our general procedure for
all subsequent work.15

We next tested different benzyne precursors in this reaction (Table 2). As can be seen, the
reaction shows good compatibility with a range of different benzyne precursors. Thus,
benzyne precursors 2b and 2c gave comparable yields of the desired benzotriazole products
(entries 1 and 2). However, the electron-poor benzyne precursor 2d gave only a 56% yield
(entry 3). An unsymmetrical benzyne precursor 2e afforded a single regioisomer in a 78%
yield (entry 4), which is consistent with our previous results.11a

A wide range of azides have also been screened (Table 3). Among them, aryl and heteroaryl
azides are generally good substrates, affording the desired benzotriazole products in 83–90%
yields (entries 1–8). The substrate scope includes electron-rich (entries 2 and 3), electron-
poor (entries 4–7), sterically hindered (entries 2, 4, and 7), and heterocyclic (entry 8) aryl
azides. All of these substrates gave clean reactions under mild conditions and tolerated
functional groups, such as ester, ether, cyano, and halogen groups. Alkyl azides are also
good substrates. Other than benzyl azide (1a), functionalized benzylic (entry 9) and allylic
(entry 10) azides also have afforded excellent yields of the desired products. Sterically
demanding adamantyl azide (1l) (entry 11) reacted smoothly to afford a 78% yield as well.
Azides with functional groups can be easily transformed into the corresponding
benzotriazoles. Thus, ethyl azidoacetate (1m) reacted cleanly to give a quantitative yield of
the corresponding benzotriazole (entry 12). Coumarin-derived azide 1n also afforded the
desired product in a moderate 51% yield (entry 13). An alkyne moiety is well tolerated
under the reaction conditions, as seen in the smooth reaction of alkyne 1o with benzyne,
affording the alkynyl benzotriazole 3s (entry 14). A free hydroxyl group is tolerated,
although an additional, unidentified side product was observed (entry 15). Although the
reaction tolerates alkenes quite well (see entries 10 and 13), the vinylic azide 1q was not a
suitable substrate in this annulation process (entry 16). After the reaction was complete, a
complex mixture was obtained. After isolation, purification, and identification, the product
was found in only a 20% yield, and we were unable to identify the rest of the products.
Trimethylsilyl azide (1r) was also examined in this reaction (entry 17). Surprisingly, the
reaction did not stop at the [3 + 2] cycloaddition stage but underwent further desilylation,
followed by phenylation with another equivalent of 2a to afford 3f as the final product. The
same reaction afforded unidentified products when MeOH was used as a cosolvent.16 The
current limitation on the scope of the azide substrate is that azides bearing electron-
withdrawing groups directly attached to the azide moiety do not work in this annulation.
Thus, the reaction of sulfonyl azide 1s did not give any annulation product.17

In conclusion, we have developed a facile, efficient, and general method for the synthesis of
substituted, functionalized benzotriazoles by the 1,3-dipolar cycloaddition of benzynes with
azides under very mild reaction conditions. The reaction has good substrate scope and
tolerates a board range of functional groups. It provides a useful new route to benzotriazoles
in much the same manner as present “click” chemistry affords triazoles. We believe that this
methodology should find broad applications in synthetic organic chemistry, as well as the
combinatorial, pharmaceutical, and polymer sciences.
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Table 1

Reaction Optimizationa

entry fluoride source solvent T (°C) time (h) yieldb (%)

1 TBAF THF 0 to rt 3 37

2 TBAF MeCN 0 to rt 3 45

3 TBAF DCM 0 to rt 5 34

4 CsF THF rt 18 37

5 CsF MeCN rt 18 76

a
All reactions were carried out on a 0.3 mmol scale in 0.1 M concentration.

b
Isolated yield.
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Table 2

Reaction with Different Benzyne Precursorsa

entry benzyne
precursor Z product

yield
(%)b

1 2b 4,5-Me2 71

2 2c
4,5-

(OMe)2
71

3 2d 4,5-F2 56

4 2e 3-OMe 78c

a
All reactions were carried out on a 0.3 mmol scale with 1.2 equiv of benzyne precursor and 2.0 equiv of CsF.

b
Isolated yield.

c
The product was assigned by a 2D-NOESY experiment; see the Supporting Information for details.
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Table 3

Reaction Scope with Different Azidesa

entry R
(compound) product

yield
(%)b

1 Ph
(1b) 87

2
2,5-(MeO)2C6H3

(1e)
88

3 3,5-Me2C6H3 85

4 2,5-Cl2C6H3(1e) 87

5
4-BrC6H4

(1f)
83

6cd 4-EtO2CC6H4

(1g)
90

7
4-(NC)-2IC6H3

(1h)
86

8 85

Org Lett. Author manuscript; available in PMC 2013 August 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shi et al. Page 8

entry R
(compound) product

yield
(%)b

9
2-IC6H4CH2

(1j)
100

10 cinnamyl
(1k) 91

11e 1-adamantyl(1l) 78

12
EtO2CCH2

(1m)
100

13 51

14 93

15e 68

16e 20

17f TMS
(1r) 3f 58

18
4-AcNHc6H4SO2

(1s)
0

a
All reactions were carried out on a 0.3 mmol scale with 1.2 equiv of 2a and 2.0 equiv of CsF.

b
Isolated yield.
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c
The reaction was allowed to run for 24 h.

d
A trace of unreacted starting azide remained even after 24 h.

e
Other unidentified products were present.

f
The reaction was carried out using 2.4 equiv of 2a and 5.0 equiv of CsF.
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