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Abstract

Structurally novel endoperoxides can be sythesized by the photocatalytic cyclotrimerization of
bis(styrene) substrates with molecular oxygen. The optimal catalyst for this process is Ru(bpz)3

2+,
which is a markedly more efficient catalyst for these photooxygention reactions than conventional
organic photosensitizers. The 1,2-dioxolane products are amenable to synthetic manipulation and
can be easily processed to 1,4-diols and γ-hydroxyketones. An initial screen of the biological
activity of these compounds reveals promising inhibition of cancer cell growth.

A number of endoperoxides from both natural and synthetic sources have been identified as
promising antimalarial, anticancer, and antiviral agents.1 Many studies of the mechanism of
action of these remarkable compounds suggest that the endoperoxide moiety is the key
pharmacophore; homolytic cleavage of the oxygen–oxygen bond by endogenous reductants
produces free radicals that are believed to be responsible for the biological activity of this
class of compounds.2 In addition, fragmentation reactions of 1,2-dioxanes provide access to
1,4-diols, γ-ketoalcohols, and similar substitution patterns that are difficult to assemble
using standard enolate chemistry.3 As a result of both the biological activity and synthetic
utility of this class of compounds, there has been considerable interest in the development of
methods for the synthesis of structurally novel 1,2-dioxanes.4

We recently reported that polypyridyl ruthenium(II) photocatalysts can generate radical
cations from olefins upon irradiation with visible light, and we showed that these
intermediates could undergo intramolecular [2+2] cycloadditions to afford cyclobutane
products.5,6,7 In the course of exploring this reaction, we observed that irradiation of
bis(styrene) 1 in the presence of a tris(bipyrazyl) ruthenium(II) complex (Ru(bpz)3(PF)2,
2•(PF6)2)8,9 under an atmosphere of oxygen produced the expected [2+2] cycloadduct 3 as
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well as a by-product that we identified as endoperoxide 4. Intrigued by this result, we
initiated an investigation to optimize the reaction conditions for production of 4.

We reasoned that we should be able to partition the reaction towards the [2+2+2] product by
increasing the concentration of oxygen. Indeed, by increasing the pressure of oxygen to 4
atm, we were able to improve the ratio of 4 to 3 to 2.8:1 (Table 1, entries 2 and 3). Next, we
found that lowering the reaction concentration led to improved yields of the desired
endoperoxide to 77% (entry 5). We also investigated the effect of temperature on the
reaction and discovered that lowering the reaction temperature to 5 °C completely
suppressed formation of the [2+2] cycloadduct without noticeably affecting the rate of
endoperoxide formation (entry 6). At this concentration and temperature, we further found
that the catalyst loading could be lowered to 0.5 mol% without adverse effect (entry 7). We
also attempted the same reaction using the tris(bipyridyl) complex Ru(bpy)3

2+ instead of
Ru(bpz)3

2+ and observed no reaction, indicating that the identity of the bipyrazyl ligands is
critical to the success of the reaction (entry 8).

The scope of the photocatalytic endoperoxide synthesis using 2•(PF6)2 is summarized in
Table 2. An examination of substituent effects (entries 1–6) revealed that the presence of an
electron-donating substituent at the ortho or para position of one of the styrenes is required
for successful reaction. As in the case of the [2+2] cycloadditions we previously reported,
we suspect that one-electron oxidation of the styrene is the initial step of this process; the
failure of less electron-rich substrates such as unsubstituted or m-methoxy-substituted
styrenes to initiate cycloaddition is consistent with this hypothesis (entries 2 and 4).
Significant variation of the substitution pattern, however, is possible; electron-withdrawing
halogen substituents are tolerated at the meta position, and other electron-donating moieties
such as silyloxy and carbamate can be used to activate the styrene (entries 7– 9). The
reacting partner cannot be an aliphatic olefin (entry 10), but olefins tolerated in this role
include styrenes bearing both electron-donating and – withdrawing substituents as well as
enynes (entries 11– 14). Substitution on the α position of the olefin is also tolerated (entry
15), although β substitution results in lower yield and poorer diastereoselectivity. Finally,
while we were unable use these conditions to conduct efficient photooxidation of untethered
styrenes, a variety of tethering groups can be used in this process (entries 16–18).

The photochemical synthesis of 1,2-endoperoxides by [2+2+2] aerobic cycloaddition of
olefins is most commonly achieved by irradiation of 1,1-diarylalkenes in the presence of
oxygen and 9,10-dicyanoanthracene (DCA) as a photosensitizer.10 The mechanism is
believed to involve photoinduced one-electron oxidation of the alkene to the corresponding
radical cation (e.g., 1 to 1•+, Scheme 2). This reactive intermediate undergoes [2+2+2]
cyclooxygenation with triplet oxygen to afford an endoperoxide radical cation (5•+) that
gives the 1,2-dioxolane product (5) upon reduction by either the reduced sensitizer or
another equivalent of substrate.10g The scope of the [2+2+2] cycloaddition, however, is
quite limited when DCA is used as a photosensitizer, and only extremely electron rich 1,1-
disubstituted styrenes (e.g., 1,1-bis(p-methoxyphenyl) ethylene) have been shown to give
good yields of 1,2-dioxolane. This has been attributed to the ability of DCA to sensitize the
formation of superoxide radical.11 The formation of this reactive oxygen species is
problematic because (1) superoxide reacts with alkene radical cations to produce oxidative
cleavage products,10b,12 which are the main products when less electron-rich olefins are
utilized, and (2) competitive quenching of the photosensitizer by oxygen reduces the
efficiency of the desired cyclooxygenation by decreasing the rate of formation of the key
alkene radical cation.

Compared to standard organic photosensitizers, Ru(bpz)3
2+ is a superior photocatalyst for

the formation of endoperoxides and significantly extends the scope of this reaction. Table 1,
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entries 9–11, show that the photooxygenation of 1 using tetraphenylporphyrin or DCA is not
successful, and that the yield of photooxidation is dramatically reduced using
triphenylpyrylium tetrafluoroborate (TPT) even when the catalyst loading is increased to 5
mol%. We attribute these observations to several factors. (1) The homoleptic bipyrazyl
complex Ru(bpz)3

2+ is significantly more electron-deficient than Ru(bpy)3
2+. Thus, its

photoexcited state, Ru*(bpz)3
2+ (+1.4 V vs SCE) can oxidize 1 (+1.1 V) readily to generate

the key radical cation intermediate, while Ru*(bpy)3
2+ (+0.8 V) cannot. (2) The observation

that tetraphenylporphyrin fails to generate any of the desired endoperoxide suggests that
singlet oxygen is not involved in the formation of endoperoxide 5. (3) Like photoexcited
TPT*, Ru*(bpz)3

2+ does not generate superoxide that might lead to oxidative cleavage of
the olefin.11 (4) Ruthenium polypyridyl complexes possess a longer excited state lifetime
than common organic PET sensitizers. For example, the excited state lifetime of *TPT is
only 3 ns,13 while the lifetime of Ru*(bpz)3

2+ has been reported to be 740 ns in MeCN.14

In addition to their biological activity, endoperoxide structures are valuable as versatile
synthetic intermediates. When endoperoxide 5 is treated with zinc metal in acetic acid, the
O–O bond undergoes reductive cleavage in high yields to afford 1,4-diol 6, which retains all
four contiguous stereocenters set in the photooxygenation reaction (eq 1). When 5 is treated
with triethylamine, the endoperoxide undergoes a highly regioselective Kornblum–
DeLaMare rearrangement15 to afford γ-hydroxyketone 7 (eq 2). We attribute the high
selectivity to better stereoelectronic overlap between the equatorial C–H bond and the O–O
σ* antibonding orbital (Figure 1). Thus, the products of this new photocatalytic process
enable the construction of stereochemically well-defined 1,4-diols as well as γ-
hydroxyketones that are difficult to assemble using alternate methods.

(1)

(2)

Finally, the endoperoxides synthesized in this study have not previously been accessible
using other synthetic methods, and we speculated that they might have biological activity
consistent with that of other endoperoxides. As an initial exploration of their potential
activity, a selection of the compounds reported in Table 2 were assayed for cytotoxicity in
human prostate cancer cell lines (Du145). Indeed, these novel endoperoxides exhibited a
range of IC50 values, varying from >100 μM for the least potent members (Table 2, entries
1, 5, and 11), to 4.6 μM for the most potent (entry 14).16 We believe, therefore, that this
method provides an attractive approach to the production of endoperoxide structures whose
biological activity profiles have yet to be fully explored.

In summary, Ru(bpz)3
2+ is an excellent photocatalyst for the synthesis of endoperoxides by

[2+2+2] aerobic photooxygenation of α,ω-dienes and is considerably more effective than
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organic photosensitizers that have commonly been utilized for photooxygenation. This
reaction can rapidly generate structurally complex endoperoxides that cannot be synthesized
by other means from relatively simple bis(styrene) starting materials. We expect this method
will be useful in the discovery of potential anti-malarial and anticancer compounds, and we
are now initiating a program aimed at studying this possibility in greater detail.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Origin of regioselectivity in Kornblum–DeLaMare rearrangement of 5.
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Scheme 1.
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Scheme 2.
Proposed mechanism for endoperoxide formation.
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