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Abstract

An effective, general protocol for the Diversity-Oriented Synthesis (DOS) of 2,4,6-trisubstituted
piperidine congeners has been designed and validated. The successful strategy entails a modular
approach to all possible stereoisomers of the selected piperidine scaffold, exploiting Type II Anion
Relay Chemistry (ARC), followed in turn by intramolecular SN2 cyclization, chemoselective
removal of the dithiane moieties and carbonyl reductions.

Nature’s biosynthesis of architecturally complex molecules often comprises iterative
reaction sequences utilizing complex molecular machines, such as polyketide synthases and
the ribosome, to unite activated, stereochemically pure building blocks.1 In an attempt to
mimic Nature’s iterative biosynthesis of complex molecules, we developed and validated
Type I and Type II Anion Relay Chemistry (ARC) (Scheme 1),2 two closely related
synthetic methods comprising multicomponent union protocols. In addition to providing
access to specific architectures, the ARC tactic also holds considerable potential for
Diversity-Oriented Synthesis (DOS).3 Many DOS programs, however, suffer from the
inability to provide access to all possible stereoisomers of a selected scaffold. We have
therefore set as a goal for our DOS programs, the construction of all possible stereoisomers
of the selected scaffold. Such a goal, if widely adopted by the DOS community, will require,
and in many cases demand the development of new, innovative synthetic methods to access
the targeted congeners in an efficient fashion, an outcome not dissimilar to one of the core
goals of natural product total synthesis.

Having achieved the development and application of Type I Anion Relay chemistry
(Scheme 1), initially as a tri-component coupling protocol, which we employed to great
advantage in a number of complex molecule synthetic programs,4 we subsequently devised
the Type II ARC tactic, also an iterative multi-component union strategy, which like the
Type I ARC process exploits bifunctional linchpins. The Type II ARC protocol holds, we
believe, even more potential for the design and synthesis of complex molecular structures.
The development of the Type II ARC process however required the design, synthesis and
validation of a series of effective bifunctional linchpins.2
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To illustrate the utility of the Type II ARC tactic in the area of DOS, we report here the
synthesis of all possible stereoisomers of a family of 2,4,6-trisubstituted piperidines
(Scheme 2: VI), utilizing this union tactic, followed in turn by an intramolecular SN2
cyclization, and further elaboration.

From the medicinal perspective, the piperidine scaffold has attracted considerable interest in
synthetic5 and biological6 communities. However, notwithstanding the availability of
numerous methods to access individual members of the 2,4,6-trisubstituted piperidine family
in a stereocontrolled fashion, there are few general methods that can provide access to all
stereoisomers. 7

The Type II ARC tactic, as illustrated in Scheme 2, not only would provide a convergent
route to 2,4,6- trisubstituted piperidines, but also enables chemical and stereochemical
diversification at the C(2) and C(6) stereogenic centers, depending on the components I–III
employed. In addition, the two dithiane groups provide synthetic handles for further
chemoselective diversification. To initiate this program, the three requisite components for
the Type II ARC reaction were prepared: initiating nucleophiles I (dithianes 1a–1d),
bifunctional linchpins II [(+)-2, (−)-2], and aziridines III [(+)-3a, (+)-3b, and (−)-3a,
(−)-3c)], the latter readily accessible from enantiomerically pure amino acids.8

With these components in hand, reaction conditions for the Type II ARC protocol were
optimized based on our earlier studies.4 Conditions employing the modified Schlosser base9

proved highly effective without the use of co-solvents such as HMPA or DMPU to enhance
the nucleophilicity of dithiane anion.10 The initial multicomponent adducts were subjected
to removal of the TBS group with TBAF (Table 1).

Mesylation of the hydroxy group then furnished the substrates for the subsequent
intramolecular SN2 cyclizations. Examination of a variety of conditions, including solvents,
bases, and leaving groups to suppress potential elimination reactions11 revealed that
treatment of the mesylates in dilute THF solution with NaH effectively provided both 2,6-cis
and 2,6-trans-piperidines, again in preparatively useful yields (Table 2).

Next, the utility of the two dithiane groups was explored (Scheme 3). Treatment of (R,S)-11
with Hg(ClO4)2 and 2,6-lutidine in wet THF led to regioselective removal of the more
accessible side chain dithiane moiety to furnish ketone (R,S)-14, which in turn was subjected
to various reduction conditions (Table 3A; Entry 1–5). Use of the Corey (R)-CBS reagent12

(Table 3A; Entry 4) and Al(OiPr)3 (Table 3A; Entry 5) proved optimal. The resultant
diastereomeric alcohols (S,R,S)-15 and (R,R,S)- 15, readily separable by column
chromatograpy, were then subjected to removal of the remaining dithiane moiety under the
Stork conditions13 to provide hydroxy ketones (S,R,S)-16 and (R,R,S)-16.

Ketones 16 were also subjected to various reduction conditions. Regardless of steric
encumberance of the hydride reducing agent, (S,R,S)-16 led to +-hydroxy isomer
(S,R,S,R)-17 as the major diastereomer (Table 3B; Entry 1–3). Molecular mechanics
calculations (MMFF94) revealed that the 2,6-diaxial chair-like conformer C possesses a
lower energy, by ca. 16 kcal/mol than the 2,6- diequatorial chair-like conformer D, due to
pseudo A1,3- strain14 between the substituents at the 2- and 6-positions and the tosyl group,
thus leading to hydride attack from the more accessible α-face of C (Figure 1). In
accordance with this reasoning, an increase in the bulkiness of the hydride reagent (L-
Selectride) led to excellent selectivity (ca. 20:1) to provide (S,R,S,R)-17 (Table 3B; Entry 4).

At this juncture, we presumed that the diastereoselectivity could be reversed under
dissolving metal conditions15 to obtain diastereomer (S,R,S,S)-17. Treatment of (S,R,S)-16
with SmI2 (4.0 equiv) and H2O (6.0 equiv) in THF furnished the desired α-hydroxy isomer
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as the major product, albeit with poor selectivity (Table 3B; Entry 4). The lack of
diastereoselectivity in the dissolving metal reductions presumably arises from competition
of the two possible chelated intermediates (Figure 1; E and F). The structures and the
relative configurations of (S,R,S,R)-17 and (R,R,S,R)-17 were confirmed by X-ray
crystallographic analysis. Under the same reduction conditions, (R,R,S,R)-17 and
(R,R,S,S)-17 were obtained from (R,R,S)-16 (Table 3B; Entry 5).

Based on the successful elaboration of the 2,6-cispiperidine congeners from (R,S)-11, the
2,6-trans congener (R,R)-11 was subjected to the same procedure.16 Following selective
removal of the less-hindered dithiane moiety of (R,R)-11, all attempts to arrive at a single
diastereomeric alcohol employing a wide variety of reducing agents proved unsuccessful.
Equally disappointing, separations of the two diastereomeric alcohols (S,R,R)-15/(R,R,R)-15,
as well as the hydroxy ketones (S,R,S)-16/(R,R,S)-16 could not be achieved.

To solve this issue, we explored the regioselective reduction of dione (R,R)-18 (Scheme 4),
which was generated by removal of the both dithiane moieties in (R,R)-11 employing the
Corey-Erickson protocol.17 Pleasingly, the internal ketone of (R,R)-18 was reduced
regioselectively upon treatment with one equivalent of the bulky reducing agent
[LiAlH(OCEt3)3] to provide a mixture of (S,R,R)-19 and (S,R,S)-19, readily separable by
flash column chromatography. Reduction of the remaining side chain ketone employing
BH3•THF furnished mixtures (ca. 1:1) of diastereomeric diols [(S,R,R,R)- 17/(R,R,R,R)-17
and (S,R,R,S)-17/(R,R,R,S)- 17], which were separated by SFC, thereby providing access to
all possible stereoisomers obtainable from (R,R)-11.

Identical synthetic steps were followed with (S,R)-11 and (S,S)-11 to prepare the
enantiomeric library ent-A.

In summary, an effective DOS strategy has be designed and validated to access the complete
matrix of stereoisomers of the targeted 2,4,6-trisubsituted piperidine scaffold, exploiting our
modular Type II ARC protocol, followed in turn by intramolecular SN2 cyclization.
Regioselective dithiane removal and reduction conditions were then examined and
optimized. In the context of complex molecule synthesis, the reported non-selective
reductions would be viewed as a shortcoming. However for Diversity Oriented Synthesis
(DOS) directed at the construction of a complete matrix of congeners, non-selective
reactions in conjunction with effective chromatographic separation has considerable
advantage. Nonetheless, the lack of observed selectivity, serves to reveal a continuing need
to develop new, selective reactivity to enhance the synthetic arsenal.
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Figure 1.
Proposed Conformational Analysis for the Reduction of (S,R,S)-16 and (R,R,S)-16.
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Figure 2.
The Complete Piperidne Library
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Scheme 1.
Type I and Type II ARC
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Scheme 2.
General Synthetic Route to Access Diverse Piperidine Analogues via Type II ARC.
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Scheme 3.
Functional and Stereochemical Diversification of 2,6-cis-disubstituted Piperidine (R,S)-11.
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Scheme 4.
Functional and Stereochemical Diversification of 2,6-trans-Disubstituted Piperidine
(R,R)-11
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Table 3

Screening Conditions for Reduction of Ketones.

A. Reduction of (R,S)-14

entry condition product ratioa (S,R,S)-14: (R,R,S)-14 yieldb (%)

1 A 2:1 93

2 B 3:1 97

3 C 4:1 92

4 D 1:20 93

5 E 5:1 88

B. Reduction of (S,R,S)-16 (entry 1–4) and (R,R,S)-16 (entry 5)

entry condition product ratioa (S,R,S,R)-17: (S,R,S,S)-17 yieldb (%)

1 A 5:1 93

2 B 20:1 97

3 F 2:1 95

4 G 1:1.5 89

5 G 1:1.3c 91

a
Ratio of diastereomers was determined by 1H-NMR.

b
Combined yield of diastereomers.

c
The ratio of (R,R,S,R)-17: (R,R,S,S)-17, Conditions: A: NaBH4, MeOH, 0 °C; B: L-Selectride, THF, −78–0 °C; C: (R)-CBS reagent, BH3•THF,

THF, 0 °C; D: (S)-CBS reagent, BH3•THF, THF, 0 °C; E: Al(OiPr)3, iPrOH, reflux; F: BH3•THF, THF, −78–0 °C; G: SmI2, H2O, THF, −78–0
°C.
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