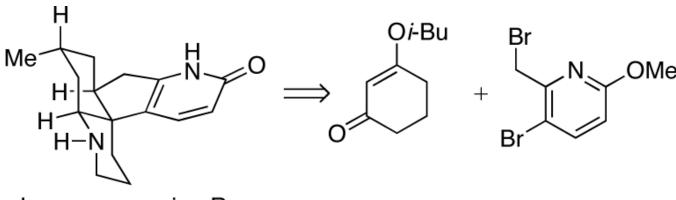


NIH Public Access Author Manuscript

Org Lett. Author manuscript; available in PMC 2011 June

Published in final edited form as:


Org Lett. 2010 June 4; 12(11): 2551–2553. doi:10.1021/ol100823t.

Methoxypyridines in the Synthesis of *Lycopodium* Alkaloids: Total Synthesis of (±)–Lycoposerramine R

Vishnumaya Bisai and Richmond Sarpong*

Department of Chemistry, University of California, Berkeley, California 94720

Abstract

Lycoposerramine R

A methoxypyridine serves as a masked pyridone in a concise synthesis of the *Lycopodium* alkaloid lycoposerramine R, which has been prepared for the first time. The key step of the synthesis is the use of an Eschenmoser Claisen rearrangement to forge a key quaternary carbon center.

The *Lycopodium* alkaloid family boasts over 200 members, which possess an array of architecturally complex frameworks. The construction of these molecules has presented synthetic challenges that have inspired highly innovative strategic and tactical solutions.¹ The emergence of the *Lycopodium* alkaloid huperzine A as a potential treatment for Alzheimer's disease has further heightened synthetic interest in this family of natural products.² Through detailed studies that began in 1942 with the work of Manske, and later, Wiesner, MacLean, Conroy, McMaster and more recently Kobayashi and Takayama, the biosynthetic strategies to the *Lycopodium* alkaloids that exploit their structural connections are beginning to offer effective and concise avenues to a wide array of these natural products.

As a part of a program to exploit methoxypyridines in the synthesis of various alkaloids, we have reported the total syntheses of the *Lycopodium* alkaloid lyconadin A⁴ and the *Galbulimima* alkaloid GB 13.⁵ The methoxypyridine group is uniquely effective as a masked pyridone because the methoxy group significantly mitigates the basicity of the pyridine nitrogen via an inductive electron-withdrawing effect.⁶ This obviates the need for reversed-phase chromatographic purification, which is often associated with the synthesis of related

rsarpong@berkeley.edu .

Supporting Information Available Experimental details and characterization for all new compounds are available free of charge via the internet at http://pubs.acs.org.

alkaloids. Building upon our earlier studies, we have embarked on the syntheses of the *Lycopodium* alkaloids lycopladine A (1),⁷ lycoposerramine R $(2)^8$ and lannotinidine B $(3)^9$ with the intention of accessing all three natural products from a common intermediate.¹⁰

Key to our unified synthetic strategy is the use of a common methoxypyridine intermediate (see 4, Scheme 1). The methoxy group of the methoxypyridine moiety in 4 may be removed enroute to 1,¹¹ demethylated to unveil the pyridone in 2 or the methoxypyridine may be unraveled at a late stage to provide 3. This communication describes our initial studies toward this overall goal, which has culminated in a concise first total synthesis of lycoposerramine R.

Retrosynthetically, we envisioned the tetracyclic framework of **2** (Scheme 1) arising from a late-stage reductive amination of ketoaldehyde **4**, which is closely related to **1**. Tricycle **4** could in turn derive from enone **5** by exploiting a stereospecific pericyclic rearrangement to forge the all-carbon quaternary center. Enone **5** presented several opportunities for the diastereocontrolled intallation of the potentially challenging quaternary center (e.g., oxy-Cope, Claisen or 2,3-Wittig rearrangements). In turn, tricycle **5** could be obtained from **6** via an intramolecular Heck reaction. The potential Heck precursor **6** could arise from a union of readily available vinylogous ester **7** and dibromide **8**¹² via a Stork-Danheiser sequence.¹³

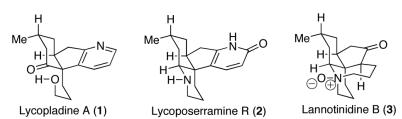
Our synthesis commenced with the coupling of the enolate of vinylogous ester **7** and picolinyl bromide **8**. This was followed by reduction of the vinylogous ester of the adduct and acidic workup to give **6** in 63% yield over the two steps. Intramolecular Heck reaction of **6** proceeded without event to afford tricyclic enone **9** in 79% yield. The α -methylation of enone **9** and subsequent Luche reduction¹⁴ proceeded with excellent diastereocontrol to give **10** in 92% yield. At this stage, several variants of the Claisen rearrangement were explored. Ultimately, the Eschenmoser Claisen rearrangement¹⁵ utilizing the dimethyl acetal of *N*, *N*-dimethylacetamide (DMA-DMA) proved to be most effective, affording **11** in 94% yield. Iodolactonization of **11** yielded spiro-fused lactone **12** in 78% yield.

The structure and relative stereochemistry of iodolactone **12** was confirmed by X-ray analysis of a single crystal (see ORTEP in Scheme 2). With a robust route to tetracycle **12** secured, we next explored the installation of the piperidine ring to complete the synthesis of **2**. LAH reduction of the lactone also effected cleavage of the C-I bond leading to diol **13** (Scheme 3) in 72% yield. Oxidation of **13** under Swern conditions proceeded without event to yield ketoaldehyde **14** in quantitative yield. Two routes for the selective homologation of the aldehyde group of **14** to afford **4** were explored. The first approach entailed selective Witttig reaction of the aldehyde group using the reagent derived from methoxymethylene phosphonium chloride, followed by hydrolysis of the resulting methyl enol ether to afford **4**. Although this reaction worked well on small scale, the yields proved to be irreproducible on larger scale. After investigating several alternative homologation strategies, it was found that **4** could be obtained in consistently high yields from **14** using the Ohira-Bestmann reaction to install a triple bond (see **15**) followed by anti-Markovnikov hydration using the procedure introduced by Grotjahn.¹⁶

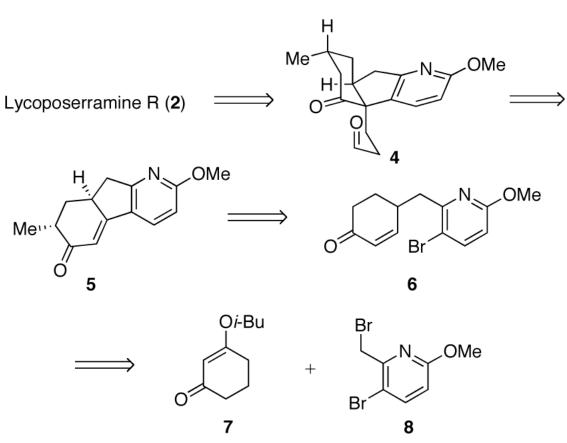
At this stage, several direct reductive amination possibilities to forge the piperidine ring in **2** were investigated. However, these were found to be low yielding. Ultimately, the piperidine moiety was best installed using benzylamine (Scheme 5) followed by hydrogenolytic cleavage of the benzyl group. A concluding methyl ether cleavage (NaSEt) gave lycoposerramine R (**2**). Synthetic lycoposerramine R gave spectral data (¹H and ¹³C NMR, IR, MS) fully consistent with that reported by Takayama et al. following its isolation.¹⁷

The synthesis of **2** proceeds in a total of 13 steps (12% overall yield) from **7** and **8**. Key to the completion of the synthesis is the use of a methoxypyridine as a masked pyridone as well as an Eschenmoser Claisen reaction to install a key quaternary carbon center. Our application of

Supplementary Material


Refer to Web version on PubMed Central for supplementary material.

Acknowledgments


The authors are grateful to the NIGMS (RO1 GM086374-01), Amgen, Eli Lilly, Johnson and Johnson, and AstraZeneca for financial support. Dr. Antonio DiPasquale(UC Berkeley) is acknowledged for assistance with X-ray crystallography.

References

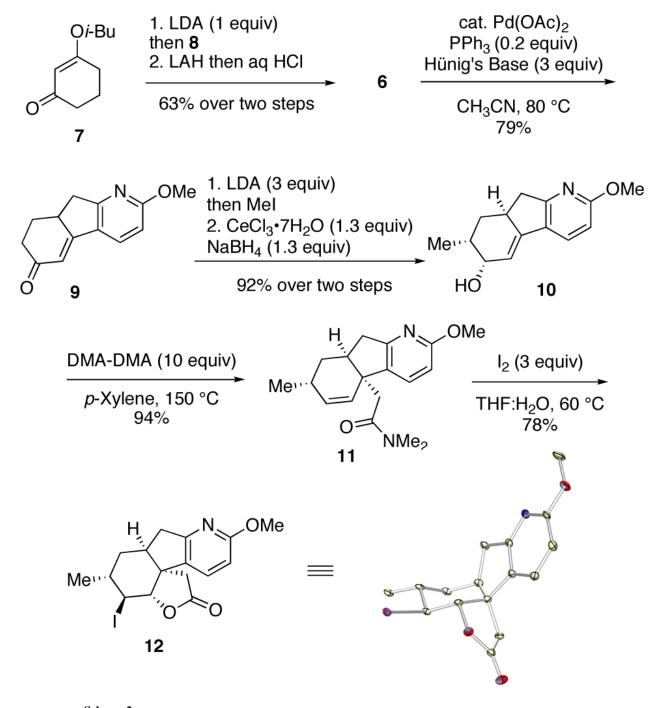
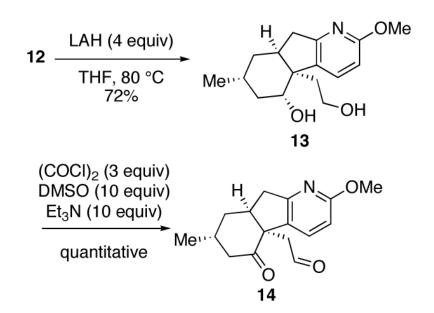
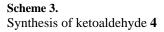
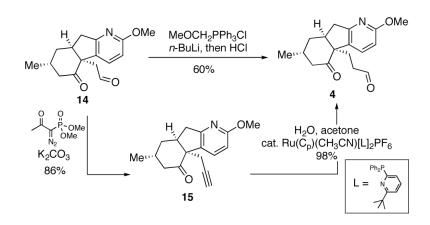

- 1. Hirasawa Y, Kobayashi J, Morita H. Heterocycles 2009;77:679–729.
- 2. Ma X, Gang DR. Nat. Prod. Rep 2004;21:752-772. [PubMed: 15565253]
- 3. Hudlicky, T.; Reed, JW. The Way of Synthesis. 1st Ed. Wiley-VCH; Weinheim: 2007. Lycopodium Alkaloids; p. 573-602.
- 4. (a) Bisai A, West SP, Sarpong R. J. Am. Chem. Soc 2008;130:7222–7223. [PubMed: 18479095] (b) West SP, Bisai A, Lim AD, Narayan R, Sarpong R. J. Am. Chem. Soc 2009;131:11187–11194. [PubMed: 19591469]
- 5. Larson KK, Sarpong R. J. Am. Chem. Soc 2009;131:13244-13245. [PubMed: 19754185]
- This is supported by a comparison of pKas of protonated pyridine and protonated methoxypyridine, see: Joule, JA.; Mills, K. Heterocyclic Chemistry. 4>th Ed. Blackwell Science Ltd.; 2000. p. 71-120..
- 7. Ishiuchi K, Kubota T, Morita H, Kobayashi J. Tetrahedron Lett 2006;47:3287-3289.
- 8. Katakawa K, Kogure N, Kitajima M, Takayama H. Helv. Chim. Acta 2009;92:445-452.
- 9. Koyama K, Morita H, Hirasawa Y, Yoshinaga M, Hoshino T, Obara Y, Nakahata N, Kobayashi J. Tetrahedron 2005;61:3681–3690.
- 10. Lannotinidine B is especially interesting from a biological perspective because it has been shown to enhance mRNA expression for nerve growth factor (NGF) in human glial cells (Ref. 9).
- For previous syntheses of 1, see: (a) Staben ST, Kennedy-Smith J, Huang D, Corekey BK, LaLonde R, Toste FD. Angew. Chem. Int. Ed 2006;45:5991–5994.. (b) DeLorbe JE, Lotz MD, Martin SF. Org. Lett 2010;12:1576–1579. [PubMed: 20196615].
- Kelly SA, Foricher Y, Mann J, Bentley JM. Org. Biomol. Chem 2003;1:2865–2876. [PubMed: 12968337]
- 13. Stork G, Danheiser RL. J. Org. Chem 1973;38:1775-1776.
- 14. Luche JL. J. Am. Chem. Soc 1978;100:2226–2227.For a review, see:Molander GA. Chem. Rev 1992;92:29–68.
- 15. Wick AE, Felix D, Steen K, Eschenmoser A. Helv. Chim. Acta 1964;47:2425–2429.For a review, see:Castro AMM. Chem. Rev 2004;104:2939–3002. [PubMed: 15186185]
- 16. Grotjahn DB, Lev DA. J. Am. Chem. Soc 2004;126:12232-12233. [PubMed: 15453733]
- 17. We are grateful to Prof. Hiromitsu Takayama (Chiba University) for copies of ¹H and ¹³C NMR spectra of **2**.

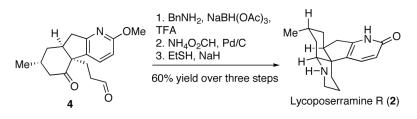
Figure 1. Selected *Lycopodium* alkaloids




Scheme 1. Retrosynthetic analysis of 2



Scheme 2. Synthesis of lactone 12


NIH-PA Author Manuscript

Scheme 4. Homologation of ketoaldehyde 14

Scheme 5. Completion of the synthesis of 2