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ABSTRACT 
 

The deposition of atomically thin highly uniform chemically derived graphene (CDG) films on 300 

mm SiO2/Si wafers is reported. We demonstrate that the very thin films can be lifted off to form 

uniform membranes than can be free-standing or transferred onto any substrate. Detailed maps of 

thickness using Raman spectroscopy and atomic force microscopy (AFM) height profiles reveal that 

the film thickness is very uniform and highly controllable, ranging from 1-2 layers up to 30 layers. 

After reduction using a variety of methods, the CDG films are transparent and electrically active 

with FET devices yielding exceptionally high mobilities of ~ 15 cm2/Vs and sheet resistance of ~ 1 

k/sq at ~ 70 % transparency. 
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Graphene1 is emerging as a promising material that has the potential to revolutionize materials 

physics as well as much of present day electronics. While graphene could be viewed as the material 

for next generation of electronics, reports on making it technologically feasible for integration into 

devices are only recently beginning to emerge.2-5 It is important to recognize that the extra-ordinary 

fundamental properties of a novel material do not necessarily translate into technological innovations 

and eventual implementation into applications. For example, it is useful to note that despite the 

investment of large amount of effort and resources over nearly two decades along with their 

attractive properties, single walled carbon nanotubes (SWNTs) have not been implemented into 

mainstream nano-electronics due to the absence of large area deposition and device integration due 
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to lack of control over chirality and organization. Instead, large area or macro-electronics 

applications on flexible substrates requiring moderate performance devices where solution processed 

networks of SWNTs can be utilized have recently gained prominence.6-7 Graphene will face similar 

challenges and thus it is important to tackle the obstacles of large area deposition and integration at 

an early stage of its development. In contrast to one dimensional nanomaterials, the synthesis of high 

quality graphene films on large area, CMOS compatible substrates will allow device fabrication 

using the well-known micro-electronics paradigm for thin film processing driven by continuing 

progress in lithography (top down approach). This represents a clear advantage over other materials 

that require novel approaches for their organization in dense arrays, capable of yielding device 

densities competitive with ULSI requirements.   

 

There are two approaches to ultra-large area deposition of graphene. The first approach deals with 

condensation of high quality graphene with controllable layers using chemical vapor deposition 

(CVD) for nano-electronics where materials with extra-ordinary mobility values are required. The 

CVD approach requires high temperatures and single crystal substrates, although recent progress on 

growth and transfer suggests that graphene on a variety of substrates is feasible.5,8-10 The second 

approach, the topic of this contribution, is the utilization of large area deposition of chemically 

derived graphene (CDG) from solution for electronics where extraordinary electrical properties are 

not required for high performance devices on flexible platforms. Devices such as sensors,11 

nanoelectromechnical systems (NEMS),12 transparent conductors,3-5,8,13-17 transistors,1,4-5,9,17-19 and 

field emitters,20 along with potential photonic applications21-22 have been demonstrated with CDG. 

Virtually all such devices require peripheral CMOS based components for logic and operation. For 

example, existing tin oxide based sensors utilize lithographically processed heaters which enhance 

the sensitivity as well as refresh the sensing material. Thus, 300 mm (a size compatible with existing 

CMOS tools) wafer scale deposition of highly uniform CDG thin films with controllable number of 

layers is the first step towards technological implementation. 

 

RESULTS AND DISCUSSION 

Key Factors for CDG Thin Film Deposition and Transfer 

We have achieved uniform 300 mm wafer scale deposition with controllable number of CDG layers 

by modified spin coating method. The flow chart of the deposition method summarizing the above is 

shown in Figure 1 (a). The key to uniform deposition on 300 mm wafers was to precisely determine 

the concentration and volume of CDG in methanol suspension. That is, if the suspension was too 

concentrated then aggregation of CGD flakes occurred, leading to thickness variations. If the 

concentration was too low then uniform and continuous coverage of the wafer surface could not be 

achieved. In addition to the precise concentration, the amount of suspension volume was also an 
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important parameter. Another important factor was allowing sufficient time for the dropped 

suspension to spread over the wafer surface prior to rotation. With the determination of all the 

necessary parameters (i.e., amount and concentration of casting solution, spreading time), deposition 

was performed by spin coating and blowing nitrogen gas at the center region of the SiO2 (300 nm)/Si 

wafer, as indicated in Figure 1 (a) (iv).12 The deposition of CDG was readily confirmed via 

observation of rapid color change from purple to uniform light blue. The number of CDG layers was 

controlled by varying the spin coating speed. Single to bi-layer films were achieved at 8000 rpm, 4-5 

layers at 6000 rpm, and 7-8 layers at 4000 rpm (Supplementary Information). Thicker films could be 

achieved by decreasing the rotation speed to 2000 rpm or by repeating the deposition multiple times. 

Uniform thin films were deposited with close to 100 % reproducibility. 

 

A schematic of the lift-off and transfer procedure of the thin films to obtain free-standing 

membranes is also shown in Figure 1 (a). The successful transfer of one dimensional nanostructures 

has been demonstrated over reasonably large areas.26-28 The advantage of the method reported here is 

that it can transfer very uniform CDG thin films on 300 mm wafers with yield of 100 %. This 

procedure leads to uniform lift-off of membranes consisting of atomically thin CDG films with poly 

meta methyl acrylate (PMMA) support, which can be readily handled as bulk film. Pure CDG 

membranes can be transferred onto any substrate by scooping or remain free-standing after PMMA 

removal using solvents such as acetone. Furthermore, we did not observe cracks on our transferred 

films, which are reported to be present in the transferred CVD-grown graphene films.29 The ability 

to fabricate free-standing CDG films indicates that the individual flakes within the thin films are 

well adhered and form a continuous network, which allows the membranes to maintain structural 

integrity even when the support PMMA is washed away. Photographs of 150 mm and 300 mm 

wafers (6 and 12 inches) with atomically thin layers of uniform CDG and the corresponding 

free-standing membranes are shown in Figure 1 (b) and (c), respectively.  

 

AFM, Optical Microscope, and Camera-Taken Images 

A 300 mm membrane transferred onto PET film is shown in Figure 2 (a). The transferred 

membrane is flexible and transparent. Typical optical microscope image of deposited graphene 

membrane without PMMA is shown in Figure 2 (b). Scale bar indicates 50 m. The membrane is 

continuous with overlapping flakes. Flake sizes generally range from 20-30 m, consistent with our 

previous observations.19 The large size of the CDG flakes synthesized in our laboratory is an 

important factor in successful deposition of ultra-large area CDG films. AFM images of the thin 

films show CDG flakes laying flat on the substrate with almost no visible wrinkles (Figure 2 (c)). 

Scale bar indicates 1 m. We noticed much lower density of wrinkles on the CDG sheets compared 

to films deposited by vacuum filtration, especially for very thin membranes. This can be explained 
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by combination of rotation force applied horizontal to substrate during spin coating and rapid 

evaporation of solvent to “freeze” flakes onto the substrate. Height profile of a cross section 

indicated by the green dashed line is included in the AFM image. Step-like height difference of ~ 

0.67 nm can be seen at the region corresponding to the edges of the flakes. It can also be seen that 

CDG sheets are also present in the region between the flakes. Our thinnest membranes consist of 

thickness as small as ~ 0.7 nm (Supplementary Information), which shows that single layer CDG 

membranes over 300 mm can be achieved with our method. 

 

Raman and XPS 

Raman spectroscopy was performed to confirm the thickness of the thin films by measuring the 

number of reduced CDG layers. Raman spectra of reduced CDG membrane were similar to our 

previous results4 in that it showed the presence of the usual D, G, and 2D peaks. Presence of D peak, 

which is absent in mechanically cleaved graphene,30 indicates the presence of structural 

imperfections induced by the attachment of oxygen functional groups on the carbon basal plane. The 

intensity of the 2D peak with respect to the D and G peaks is small due to disorder but the shift and 

shape of this peak can be used for analyzing the number of layers in reduced CDG. We have 

performed similar analysis to our previous work4 to determine the number layers in reduced CDG 

thin films. A typical Raman map over 48 m x 24 m spatial region is shown in Figure 2 (d). The 

result shows that the thin films deposited consist of mostly single to bi-layer, which is consistent 

with AFM image in Figure 2 (c). 

 

For electronic applications of CDG thin films, reduction is essential because as-deposited GO is 

insulating.4,13 We have attempted a number of methods to reduce CDG thin films. Specifically, we 

have reduced by dipping CDG flakes in hydrazine,18 exposure to hydrazine and dimethylhydrazine 

vapor,4,13-14 electrochemical reduction,31 thermal annealing3-4,13,15 and a combination of these 

techniques.4,13 We have found that to a large extent, all reduction treatments lead to similar results. 

Figure 2 (e) shows C1s peak of X-ray Photoelectron Spectroscopy (XPS) spectrum on CDG thin 

films reduced via thermal annealing at 1100 oC. The most important feature of XPS was that oxygen 

content was found to have been reduced to ～8 at. % from ～39 at. %32 for as-synthesized CDG. 

With the aid of peak fitting program, the peaks were deconvoluted into: C=C/C-C in aromatic rings 

(284.6 eV), C-O (286.1 eV), C=O (287.5 eV), C=O(OH) (289.2 eV), and -  * satellite peak 

(290.6 eV).33 These assignments are in good agreement with our previous work.32 

 

Opto-Electronic and Transport Properties 

Transmittance and sheet resistance of reduced CDG thin films as a function of thickness are 

shown in Figure 3. Transmittance of ~ 96 % was measured for single and bi-layered films. Lowest 
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sheet resistance of 600 /sq, albeit at a low transparency of ~ 40 %, was achieved for reduced CDG 

films with thickness of ~ 30 nm. The best opto-electronics properties were obtained for lower 

thicknesses with a thin film of 5 nm exhibiting sheet resistance of ~ 2.4 k/sq at a transmittance of ~ 

81 % while 15 nm thin films exhibited transmittance of ~ 70 % at a sheet resistance of ~ 1 k/sq. A 

recent report on the high temperature CVD growth and subsequent transfer of graphene films 

demonstrated better opto-electronic values than for the CDG thin films reported here.29 

 

Typical transport measurement results for reduced CDG are shown in Figure 4. Conventional 

electron-beam lithography was used to define electrodes over deposited membrane. Cr/Au (5/30 nm) 

were thermally evaporated followed by lift-off of the mask. The channel length between source (S) 

and drain (D) was 20 m. The “switching” behavior was measured by two-terminal configurations 

with silicon substrate used to apply gate bias (Vg). Measurements were made in vacuum, and in 

ambient conditions at room temperature. Conductance modulation by varying gate bias was 

observed in all measured devices, which showed ambipolar field effect similar to that of the previous 

study.4 The device is unintentionally doped by holes most probably due to adsorbed oxygen and 

water molecules. The neutrality point is generally observed for gate bias of around + 50 V that 

shifted to almost 0 V when measurements were performed in vacuum. The on/off ratio of the devices 

was measured to be ~3 and thus is far from a practical switching device but the mobility values 

reported here can be used to define the quality of reduction treatment and also for comparison with 

other reports in the literature. The best mobility we observed was 10 - 15 cm2/Vs for the hole branch 

of the transfer characteristics, with the electron mobilities being slightly lower.  

 

CONCLUSIONS 

In summary, we have deposited uniform transparent and conducting CDG thin films with control 

over the number of layers. The lowest sheet resistance we achieved was 600 /sq with field effect 

mobility values > 10 cm2/Vs on CMOS compatible 300 mm SiO2/Si wafers. The deposition over 

ultra-large areas is highly uniform and reproducible, yielding films ranging in thickness from single 

monolayer to several layers. We also demonstrate a simple method to obtain large free-standing 

membranes of CDG thin films using a simple lift-off method. The ability to obtain high mobility 

solution processed graphene thin films on wafers that are compatible with existing CMOS tools 

should provide a pathway for technological implementation of CDG thin film in applications such as 

sensors, NEMS and analog devices. 

 

METHODS 

Deposition of CDG Films 

The precise concentration, volume, and spreading time for achieving uniform deposition for 
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300mm CDG thin film via modified spin coating method was 0.4 mg/ml, 60 ml, and 30 min., 

respectively. CGD was fabricated by oxidizing graphite to obtain graphene oxide (GO) using the 

modified Hummers method, details of which are provided elsewhere.23 Prior to casting the 

suspensions, the wafers were dipped into 50 wt% potassium hydroxide (KOH) solution for 15 min. 

to enhance the hydrophilicity of the surface. Obvious decrease in contact angle upon casting the 

solution was observed after the treatment, enabling rapid spread of the suspension over the entire 

substrate area. The role of the surface treatment was essential for further enhancement in uniform 

spreading of CDG flakes. After the treatment, substrates were rinsed in water and dried. 

 

After casting the GO solution onto center of the substrates, time was allowed prior to rotation 

(Spreading time). When rotation started (Spin coater, Model P6700, Specialty Coating Systems 

(SCS) Inc.), nitrogen gas was blown at center region of the substrates to accelerate the vaporization 

of the solvent. 12 Without the nitrogen gas blow, the deposited films were not uniform and continuous. 

When all the solvent was vaporized, CDG films were deposited on the substrates.  

 

Transfer of Deposited CDG Films 

For transfer, PMMA was casted directly onto deposited CDG films, and spin coated for 500 rpm for 

5 sec. followed by 4000 rpm for 60 sec. The PMMA coated CDG films were post-baked for 2 hours 

at 170 oC to enhance adhesion between PMMA supports. The films was then submerged (for 3hrs) in 

sodium hydroxide (NaOH, 1M) to remove the PMMA/CDG membranes from the substrate.24-25 The 

membranes were dried for few hours and rinsed in acetone for 30 min. to remove the PMMA 

supports. We observed no significant change in the thickness of deposited films and transferred films, 

which is consistent with Reina et al. 24 showing successful transfer down to a single flake.  

 

Reduction 

Directly in Hydrazine Anhydrate 

Dried GO was prepared for reduction directly in hydrazine anhydrate (Caution: hydrazine 

anhydrate is extremely toxic and should be handled in a glove box). GO solution was prepared in a 

petri dish and placed in a vacuum desiccator with phosphorus pentoxide for a week. When the GO 

was dry, it was directly mixed with hydrazine anhydrate in a glove box. After several hours, GO is 

reduced and dispersed in the solution. 

Hydrazine Vapor 

For reduction by hydrazine and dimethylhydrazine vapor (Caution: hydrazine and 

dimethylhydrazine are extremely toxic and should be handled with an extra care), few ml of the 1 

vol % aqueous solution was prepared in a small glass petri dish. The petri dish with the solution was 

then placed in a larger glass petri dish with the samples inside, and loosely sealed. The petri dish was 
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heated on a hot plate to 90 oC for reduction. Reduction time was typically 2 hours. 

Electrochemical 

CDG films were deposited on ITO substrates for electrochemical reduction. Kapton tape was used 

to mask regions for electrode contacts. CDG films on ITO substrates were placed in a beaker filled 

with sulfuric acid (H2SO4) (1M), which acts as an electrolyte. Glassy carbon rod (=1mm) was 

gently pressed onto ITO substrate where Kapton mask was used, and Ag rod (=1mm) was placed in 

electrolyte as a counter electrode. Voltage ranging from 1.0-2.0 V was applied between the 

electrodes for reduction. About 20 sec. after voltage is applied, rapid change of the film color was 

observed, indicating reduction is taking place. Reduction time was about 5 min. 

Thermal 

 GO films were annealed in a conventional furnace back filled with Ar/H2 gas mixture (90 % Ar and 

10% H2). Annealing time was 15 min. 
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FIGUR CAPTIONS 

 

Figure 1 (a) 

The complete flow chart of the deposition procedures for 300 mm CDG films. (iv) shows deposition 

performed by spin coating and blowing nitrogen gas at the center region of the SiO2 /Si wafer. 

 

Figure 1 (b), (c) 

Photographs of (b) 150 mm (6 inch) and (c) 300 mm (12 inch) wafers with atomically thin layers of 

uniform CDG and the corresponding free-standing membranes. 

 

Figure 2 (a) 

A 300 mm membrane transferred onto PET film. The transferred membrane is flexible and 

transparent. 

 

Figure 2 (b), (c) 

Typical optical microscope image (scale bar indicates 50 m) and AFM image (scale bar indicates 1 

m) of deposited graphene membrane without PMMA, respectively. 
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Figure 2 (d) 

A typical Raman map over 48 m x 24 m spatial region, which shows that the deposited film 

consists of mostly single to bi-layer. 

 

Figure 2 (e) 

C1s peak of XPS spectra on CDG thin films reduced via thermal annealing at 1100 oC. Oxygen 

content was found to have been reduced to ～8 at. %. 

 

Figure 3 

Transmittance and sheet resistance of reduced CDG thin films as a function of thickness. 

Transmittance of ~ 96 % was measured for single and bi-layered films. Lowest sheet resistance 

achieved was 600 /sq. 

 

Figure 4 

Typical transport measurement results for reduced CDG membrane performed in vacuum and air. 

Inset shows an optical microscope image of the actual device. The channel length between source 

(S) and drain (D) is 20 m. 



RotateSolution
Gas blow

KOH
treatment

Spreading
time

(a)

(i) (ii) (iii) (iv)

Deposition
PMMA
supportLift-off

Transfer

(i) (ii) (iii) (iv)

(v)(vi)(vii)(viii)

Removal of 
PMMA 300 mm

(v)(vi)(vii)(viii)

(ix)

150 mm
(ix)

(b) (c)

Figure 1  H.Yamaguchi et al.



(a)(c) (a)( )
0.67nm

(b)(b)

Figure 2  H.Yamaguchi et al.



C1s20 2
3
3 3
2

(d) (e)

0 10 20 30 40
0

5

10

15

Y
 (

m
)

1
2
2 2
1

0 10 20 30 40
X (m)

Figure 2  H.Yamaguchi et al.



106

107

ce
 (

 s
q-1

)
80

90

100 Transm

102

103

104

105
he

et
 re

si
st

an
c

40

50

60

70
m

ittance (%
)

0 5 10 15 20 25 3010

Thickness (nm)

S
h 40

Figure 3  H.Yamaguchi et al.



3.5

4.0
 

Air S D

2.0

2.5

3.0

 

I sd
 (

A
)

-80 -40 0 40 80
1.0

1.5

Vg (V)

Vacuum

Figure 4  H.Yamaguchi et al.


	Ultra-large_MS_ArXiv_091210.pdf
	Ultra-large_Figs_ArXiv_091210.pdf

