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ABSTRACT 

 

Tunneling field-effect transistors (FETs) have been intensely explored recently due to its 

potential to address power concerns in nanoelectronics. The recently discovered graphene 

nanoribbon (GNR) is ideal for tunneling FETs due to its symmetric bandstructure, light effective 

mass, and monolayer-thin body. In this work, we examine the device physics of p-i-n GNR 

tunneling FETs using atomistic quantum transport simulations. The important role of the edge 

bond relaxation in the device characteristics is identified. The device, however, has ambipolar I-

V characteristics, which are not preferred for digital electronics applications. We suggest that 

using either an asymmetric source-drain doping or a properly designed gate underlap can 

effectively suppress the ambipolar I-V. A subthreshold slope of 14mV/dec and a significantly 

improved on-off ratio can be obtained by the p-i-n GNR tunneling FETs. 
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With the scaling down of field-effect transistors (FETs), power dissipation has been 

increasing dramatically.
1
 At the same time, the static power dissipation is becoming an 

increasingly important concern. For lowering the static power dissipation, the most important 

parameter for optimization is the subthreshold swing (SS), which is the voltage required to 

change current by an order of magnitude. In a metal-oxide-semiconductor (MOS) FETs, the 

value has been limited by thermionic emission to 60mv/dec at room temperature,
2
 and it is 

getting worse as transistors are scaling down in size. In recent years, there has been a persistent 

pursuit for alternative device structures and materials that could provide a subthreshold swing 

less than 60mv/dec. A large number of transistors have been reported that explore band-to-band 

tunneling principles in silicon, germanium, and carbon nanotube (CNT) to obtain the 

subthreshold swing less than 60 mv/dec and high Ion/Ioff ratio by experiment and theory.
3-10

 

Studies on the GNR MOSFETs using both tight-binding (TB) and first-principles methods have 

been reported.
11-14 

This letter presents a computational study of the p-i-n tunneling FETs using a 

graphene nanoribbon (GNR) as the channel material, which has rarely been studied before. The 

recently discovered GNR is a preferred material of choice due to its symmetrical band structure, 

light effective mass, and direct band gap to favor tunneling.
15-18

 Fundamental questions regarding 

the important role of GNR edges, schemes for controlling ambipolar transport, and achievable 

device performance, however, remain unclear.  

In this letter, we theoretically explore the device physics of GNR tunneling FETs by using 

three-dimensional atomistic simulations. We show that the edge bond relaxation has a significant 

effect on the device characteristics of the p-i-n GNR tunneling FETs, which distinguishes it from 

a CNT tunneling FETs. A subthreshold swing of 14mV/dec and a large on-off ratio are obtained 

at the ballistic transport limit in the presence of edge bond relaxation. The device, however, 
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shows ambipolar I-V characteristics that are not preferred for digital electronics applications. We 

show that by using an asymmetric source-drain doping or a properly designed gate underlap, the 

ambipolar characteristics can be significantly suppressed. The modeled p-i-n GNR tunneling 

FETs has a double-gate geometry with a gate oxide thickness of 1.5 nm and the dielectric 

constant of = 16 (for HfO2), as schematically shown in Figure 1. A semiconducting armchair-

edge GNR (AGNR) is used as the channel material.
19-21

 The AGNR has an index of n=13, which 

results in a width of ~1.6nm and a bandgap of ~0.86 eV. The AGNR channel is intrinsic, and has 

the same length as the gate, Lch=30nm. The p-type doping density of the semi-infinite source 

extension is 0.01 dopant/atom, and the drain extension is n-type doped to the same density. The 

workfunction of the gate electrode is adjusted to a value so that the minimal leakage current 

appears at VG=0, and a variation of the gate workfunction results in a shift of the threshold 

voltage. A power supply voltage of VDD = 0.4 V and room temperature operation T=300K are 

assumed. The above parameters are nominal ones, and we explore various issues by varying the 

parameters.  

To model the device characteristics, open-boundary Schrodinger equation is solved in an 

atomistic pZ orbital basis set using the non-equilibrium Green’s function (NEGF) formalism.
22

 A 

nearest neighbor tight binding (TB) parameter of t0 = -2.7 eV is used. Previous ab initio 

simulations, however, indicated the important role of the edge bond relaxation in the AGNR, 

which changes the edge bond length and bond parameters.
23-24

 To model edge bond relaxation, 

we use a different TB parameter, 0
'
0 tCt edge  for the edge bonds, where Cedge=1.12 as 

parameterized to the ab initio bandstructure simulations.
23

 Ballistic transport is assumed. As 

indicated by a study on the p-i-n CNT tunneling FETs, phonon scattering has a small effect on 

the p-i-n tunneling FETs characteristics if the hot phonon effect is small.
9
 The semi-infinite 
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source and drain contacts are accounted for by the contact self-energy matrix, which is solved by 

a recursive relation. The atomistic transport equation is self-consistently solved with a three-

dimensional (3D) Poisson equation using the finite element method. The gate leakage current, 

which can be suppressed by increasing the gate insulator thickness, is neglected here. The noise 

due to thermal effects and nonideal trap states is not dealt with here for simplicity.  

We first examine the effect of edge bond relaxation on device performance. Figure 2 

compares the log(ID) vs. VG characteristics at VD=0.4V in the presence and in the absence of edge 

bond relaxation. The 13-AGNR, as shown in Figure 2(a), is a representative case for the n=3p+1 

GNR group, in which the edge bond relaxation results in an increase of the bandgap. In contrast, 

the 12-AGNR, as shown in Figure 2(b), is a representative case but for the n=3p GNR group, in 

which the edge bond relaxation results in a decrease of the bandgap.
23

 As shown in Figure 2(a), 

in the presence of edge bond relaxation, the minimal leakage current Imin decreases by about 10
6
 

and the on-current (defined at VG=VD=VDD=0.4V) decreases by about a factor of 5. The 

subthreshold swing decreases from S=51mV/dec to S=14mV/dec. The results indicated the 

important role of edge bond relaxation, which must be considered in designing GNR tunneling 

FETs. The qualitative trend is opposite for the n=3p GNR group. As shown in Figure 2(b), the 

minimal leakage current and the subthreshold swing increase considerably for the 12-AGNR in 

the presence of edge bond relaxation.  In comparison, it is not an issue for a CNT tunneling FETs, 

which does not have an edge. The significant decrease (increase) of Imin and S is due to the 

increase (decrease) of the bandgap stemming from the edge bond relaxation. As shown in inset 

of Figure 2(a), at minimal leakage point (VG=0V) without edge bond relaxation bandgap for 13-

AGNR is 0.71eV, the bottom of conduction band edge in the channel region is lower than top of 

valence band edge in the source region. Band to band tunneling current exists even at the 
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minimal bias condition. When considered edge bond relaxation, the bandgap increases to 0.86eV, 

the bottom of conduction band edge in the channel region becomes higher than top of valence 

band edge in source region. As a result, the band-to-band tunneling is completely turned off.  

The same argument applies to the drain-channel junction, which is symmetric to the source-

channel junction at the minimal bias condition. Although the increase of the bandgap from 

0.71eV to 0.86eV is slight, complete turn-off of the band-to-band tunneling results in a 

significant lowering of the minimal leakage current by about six orders of the magnitude. The 

subthreshold swing is smaller than 60mV/dec because the exponentially decaying tail of the 

electron distribution functions is cut off by the semiconductor band gap in the source and drain 

extensions. The device also shows ambipolar ID-VG characteristics, due to a similar reason as the 

ambipolar characteristics in Schottky barrier GNRFETs or CNTFETs. Band-to-band tunneling 

from the source to the channel results in electron conduction at high gate voltages, and that from 

the drain to the channel results in hole conduction at low gate voltages. The device can be 

conceptually viewed as an n-type FET (due to source-channel tunneling) in parallel with a p-type 

FET (due to drain-channel tunneling). Ambipolar I-V characteristics, however, are not preferred 

for digital electronics applications.
25

 We propose and examine two schemes for suppressing 

ambipolar characteristics in the p-i-n GNR tunneling FETs.  

Controlling the ambipolar characteristics by designing the drain doping density is examined 

next. If the doping of the drain extension is reduced, the width of the band-to-band tunneling 

barrier for holes at the drain end of the channel increases due to a larger electrostatic screening 

length for a lower doping density, as shown in Figure 3(b). As a result, the p-type conduction 

branch is significantly suppressed, because tunneling current decreases exponentially with an 

increasing barrier width. In contrast, because the n-type conduction is controlled by the electron 
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band-to-band tunneling from the source to the channel, it is insensitive to the drain doping 

density. Asymmetric source-drain doping, therefore, offers a successful scheme for suppressing 

ambipolar I-V characteristics, as shown in Figure 3(a). It is also observed that the source-drain 

current is nearly independent of the gate voltage in –0.2V<VG<0 for a drain doping density of 

ND=0.001 dopant/atom. The reason is that in this bias range, the band-to-band tunneling is 

completely turned off and the current is due to the direct source-drain tunneling, as indicated by 

the lack of the band-to-band tunneling peak in the current spectrum plot, compared to the case of 

higher drain doping densities shown in Figure 3(c).   

We next examine controlling the ambipolar characteristics by using a gate underlap at the 

drain end of the channel, as shown in the inset of Figure 4(a). To examine the underlap effect, we 

fix the channel length at 50nm and vary the length of the gate underlap. Figure 4(a) shows a 

suppression of the ambipolar characteristics as the drain underlap increases. Again, the n-type 

conduction branch is unaffected and the p-type conduction branch is suppressed. The increase of 

the gate underlap at the drain end results in a nearly linear potential drop in the ungated part of 

the channel, which increases the width of the band-to-band tunneling barrier, as shown in Figure 

4(b). The increase of the tunneling barrier thickness results in an exponential decrease of the 

band-to-band tunneling current, as shown by the current spectrum in Figure 4(c). We also 

emphasize that the gate length should not be shrunk so short that the direct source-drain 

tunneling becomes a concern. As shown in the inset of Figure 4(c), which zooms in the current 

spectrum due to direct source-drain tunneling, an increase of the drain underlap results in an 

increase of the direct source-drain tunneling current due to a thinner tunneling barrier attributed 

to a shorter gate length.  Figure 4 shows that a properly designed gate underlap can be another 

effective method to suppress ambipolar characteristics.  
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Finally we examine the device performance of the nominal GNR tunneling FETs as shown in 

Figure 1 at different supply voltage. To characterize the performance of the device, we use a 

previously developed scheme, which plots Ion as a function of Ion/Ioff as shown in Figure 5.
26

 A 

significant improvement in terms of the maximum achievable on-off ratio is observed, especially 

compared to Schottky barrier GNRFETs which suffers from small maximum achievable on-off 

ratio when the gate oxide thickness is scaled down. Because the thermionic emission tail in the 

source and drain regions are suppressed by the bandgap for the p-i-n GNR tunneling FETs, the 

minimal leakage current is small and the subthreshold swing can be considerably smaller than 

the 60mV/dec room temperature limit. As a result, when the power supply voltage is 0.3V, the 

maximum achievable Ion/Ioff ratio is up to 10
11

. The maximum on-off ratio decreases considerably 

as the power supply voltage increases above 0.4V, due to the turn on of the band-to-band 

tunneling at the minimal leakage bias condition, as compared to the direct source-drain tunneling 

as the only leakage mechanism for low VDD. The maximum achievable Ion/Ioff of 10
6
 at VDD=0.5V, 

however, is still significantly better than the value of 100 by a Schottky barrier GNRFETs with a 

similar channel material. The increase of the Ion/Ioff, however, comes at an expense of a lower Ion 

due to the existence of the band-to-band tunneling barrier at the source end in the on-state. 

Optimization of the on-current will require further engineering of the tunneling barrier at the 

source end, which is out of the scope of this letter. 

The device characteristics investigated here is for an ideal smooth edge, which establishes the 

performance limits of the GNR p-i-n tunneling FETs. Although the edge quality still remains to 

be improved, recent experiments have made significant progress for achieving smooth-edge 

GNRs.
18,27

 GNR edge roughness could affect the performance of the GNR tunneling FETs in two 

ways. First, bandgap states could be induced by the GNR edge roughness. The states, especially 
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in the band-to-band tunneling junction regions, can assist tunneling and results in an increase of 

both the on-current and the leakage current. Second, the edge roughness can result in edge 

scattering for conducting electrons which lowers the current. A detailed study of the edge 

roughness effect in GNR tunneling FET is beyond the scope of this letter. 

Demonstration of the GNR p-i-n tunneling FETs would require techniques for obtaining 

narrow GNRs and for doping GNRs developed. The recently demonstrated method for 

chemically deriving the GNRs from graphene is capable of producing GNRs down to a width of 

about 1.5nm.
18

Attaching functional groups to the chemically reactive edge of the GNRs could be 

a promising method for achieving the required doping in the GNR tunneling FETs. 

In summary, device physics of GNR tunneling FETs is studied by 3D atomistic simulations. 

The important role of the edge bond relaxation on device characteristics is discovered. The 

modeled device shows a subthreshold swing of 14mV/dec at room temperature, and significantly 

improved on-off ratio, especially at low power supply voltages. The ambipolar I-V characteristics 

are a concern for digital electronics applications. We show that by either using an asymmetric 

source-drain doping or a properly designed gate underlap, the undesired ambipolar 

characteristics can be suppressed significantly for the p-i-n GNR tunneling FETs. 
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FIGURE CAPTIONS 

Figure 1 The modeled device structure. The p-i-n GNR tunneling FETs has a double gate 

with the gate oxide thickness of tox=1.5nm and dielectric constant of =16. The 

nominal parameters are listed below. The n=13 armchair-edge GNR channel is 

intrinsic with a channel length of Lch=30nm. The p-type doping density of the 

source extension is NA=0.01 dopant/atom, and the n-type doping density of the 

drain is ND=0.01 dopant/atom. 

 

Figure 2 The log(ID) vs. VG characteristics of the GNR tunneling FETs as shown in Figure 

1 at VD=0.4V for (a) the n=13 AGNR channel and (b) the n=12 AGNR channel in 

the presence of edge bond relaxation (dashed lines) and in the absence of edge 

bond relaxation (solid lines). The band profiles at the source-channel junction are 

shown in the insets with the same symbols for the minimal bias condition (VG=0). 

 

Figure 3 Effect of drain doping. (a) The log(ID) vs. VG characteristics at VD=0.4V for the 

GNR tunneling FETs as shown in Figure 1 with different drain doping densities 

(b) The band profiles and (c) the energy resolved current spectrum at VG=-0.1V 

and VD=0.4V. The source (drain) Fermi level, EFS (EFD) is also shown in (b). The 

simulated drain doping densities are ND=0.001 (dash-dot lines), 0.004 (dotted 

lines), 0.008 (dashed lines), and 0.01 (solid lines) dopant/atom. The source doping 

density is fixed at NA=0.01 dopant/atom. 
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Figure 4 Effect of gate underlap. (a) The log(ID) vs. VG characteristics at VD=0.4V for the 

GNR tunneling FETs as shown in Figure 1 with different gate underlap at the 

drain end of the channel as shown in the inset. The AGNR channel has an index 

of n=13 and a channel length of 50nm. (b) The band profiles and (c) the energy 

resolved current spectrum at VG=-0.4V and VD=0.4V. The simulated gate underlap 

lengths are 0 (solid lines), 10nm (dashed lines), and 15nm (dotted lines).  

 

Figure 5 Device performance. The on-current vs. on-off ratio for the GNR tunneling FETs 

as shown in Figure 1 in the presence of edge bond relaxation at different power 

supply voltages. 
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FIGURES 
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Figure 2 
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