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Abstract

We investigate vibron-assisted electron transport in single-molecule transistors containing

an individual Fe4 Single-Molecule Magnet. We observe a strong suppression ofthe tunneling

current at low bias in combination with vibron-assisted excitations. The observed features are

explained by a strong electron-vibron coupling in the framework of the Franck-Condon model

supported by density-functional theory.

Vibrational modes (vibrons) play an essential role in the mechanics of a wide variety of nanos-

tructures. In addition, they can couple to the electric charge, affecting the electrical transport
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through such nanoelectromechanical (NEMS) systems. Electron-vibron coupling has been exper-

imentally observed, for instance, as vibron-assisted transport excitations in carbon nanotubes,1–4

in single molecules embedded in a solid-state transistor5–9 or probed by a scanning tunneling mi-

croscope (STM) configuration.10,11 When vibrational modes are mechanically excited in NEMS,

they may induce mechanical instabilities.12–14 In magnetic molecules, the molecular vibrations

may couple to spin degrees of freedom and play an important role in the molecular spin relax-

ation.15 Very recently, experimental evidence of such spin-vibron coupling was reported for a

single-molecule magnet (SMM) TbPc2 grafted onto a carbon nanotube.16 In that case, the re-

versal of the SMM magnetic moment via an external magnetic field was indirectly observed in

the conductance map from the coupling to vibrational excitations of the nanotube. Therefore,

electron-vibron coupling may be in principle used to detectthe magnetic states of nanostructures

and, conversely, to manipulate their transport and magnetic properties.

An interesting feature induced by electron-vibron coupling is the Franck-Condon (FC) block-

ade effect which occurs when electric charge is strongly coupled to vibrations. A manifestation

of the FC blockade effect is that single-electron tunnelingis suppressed at low bias for any gate

voltage.17,18 It was first observed by Weig et al.19 in electron transport through GaAs/AlGaAs

quantum dots of several hundreds of nm. The FC blockade effect was later observed in suspended

carbon nanotubes2,3 that are typically orders of magnitude larger than individual molecules. So far,

however, the FC blockade effect has not been systematicallyanalyzed in single-molecule junctions

despite several experimental studies focusing on electron-vibron coupling.

In this letter, we show experimental evidence of the FC blockade effect in electron transport

via an individual magnetic molecule and present supportingcalculations from density-functional

theory (DFT). We investigate sequential electron tunneling (SET) through a SMM Fe420 in a three-

terminal configuration shown in Figure 1. We observe a dramatic suppression of current at low bias

in combination with evenly spaced lines parallel to the Coulomb diamond edges in the conducting

region. The suppression of current cannot be lifted by a gatevoltage. The energy spacing of

the excitations is 2.6 meV and is not affected by an applied magnetic field, thereby ruling out a
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possible magnetic origin. The energy spacing and the estimated resultant electron-vibron coupling

constant are consistent with our DFT-calculated values. Inaddition, the DFT calculations suggest

that the electron-vibron coupling can be enhanced by avoiding chemical bonding at the interface.

Our findings clearly indicate strong electron-vibron coupling in magnetic molecules at the single-

molecule level. They also open a more general route to investigate new rich physics in single-

molecule transistors containing individual magnetic molecules; examples include studies of the

effects of intrinsic molecular vibrations on quantum interferences21 and on magnetic relaxation as

a source of decoherence for SMM-based qubits.22

The structure of the Fe4 SMM20 with formula [Fe4(L)2(dpm)6] is shown in Figure 1a. The

Fe4 molecule consists of four Fe3+ ions encapsulated in a hydrophobic shell made up of tert-

butyl and phenyl groups from dpm− and L3− ligands, respectively. One Fe3+ ion at the center is

antiferromagnetically coupled with three Fe3+ ions at the vertices of a triangle via oxygen bridges.

The total spin in the ground state isS = 5 and a magnetic anisotropy barrier of 16 K must be

overcome to reverse the magnetic moment. The size of the Fe4 SMM is 1.90 nm along the direction

defined by the phenyl rings.

S
source drain

gate

source

drain

gate
(c)(a) (b)

1.90 nm

Fe

O

C

Figure 1:Fe4 Single-molecule transistor. (a) Sketch of the Fe4 SMM. The magnetic core is made
of 4 Fe3+ ions (purple) surrounded by an organic shell (grey and red).Hydrogen atoms are not
shown for clarity. The size of the molecule from ring to ring is 1.90 nm. (b) SEM image and (c)
sketch of a molecular three-terminal transistor. An individual molecule is linked to gold source and
drain electrodes that electrically bias the molecule. An underlying gate electrode is used to tune
the levels of the molecule independently from the bias voltage (gate oxide separating gate from
source/drain electrodes not shown).

A representative scanning electron microscope (SEM) imageof the three-terminal device con-
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figuration is shown in Figure 1b. Electromigration is used tothin the Au wire and followed by

self-breaking in a solution of Fe4 molecules to complete the device. Figure 1c schematically shows

the sample layout: a single Fe4 molecule is electrically linked to source and drain Au electrodes

in order to apply a bias voltage to it. The Fe4 molecule is not functionalized with specific surface-

binding groups so that van der Waals interactions are responsible for the molecule-electrode cou-

pling. An underlying gate electrode is used to tune the levels of the molecule independently from

the bias voltage, as illustrated in Figure 1c. Importantly,our previous measurements showed that

the magnetic structure of Fe4 is preserved in a three-terminal configuration.23 Measurements are

performed at 1.8 K unless specified otherwise.

Figure 2a shows a differential conductance color map in which dI/dV is plotted as a function

of biasV and gate voltageVg. Low-conductance regions (left and right blue areas) are indicative

of two different charge statesN andN +1 which are accessible using the gate voltage. In this

Coulomb blockade regime, the charge is stabilized within the molecule. Note that only two charge

states are available, indicative of high addition energiesas expected for a SMM. Strong high-

conductance resonances, indicating SET through the molecule, separate adjacent charge states.

The coupling of the molecule to the electrodes (ΓL, ΓR) is of the order of 1 meV and is obtained

from the full width at half maximum (FWHM) of the Coulomb edges.

Interestingly, two remarkable features are observed in thedI/dV map. First, SET is highly

suppressed at low bias below a threshold valueVth =±7.4 meV. As a result, the Coulomb diamond

edges do not intersect at zero bias, that is, nodI/dV peak is observed at zero bias. This low-bias

gap cannot be lifted by sweeping the gate voltage. Second, evenly spaced lines parallel to the

Coulomb diamond edges are observed at positive and negativebias for|V |> |Vth| (see Figure 2a).

The lines become more visible when a numerical derivative ofthe dI/dV is taken as shown in

Figure 2b. The energy spacing between these excitations is∆E = 2.6 meV. In the presence of a

magnetic field, the Coulomb diamonds shift in gate as a resultof the magnetic properties of the

Fe4 SMM. Interestingly, the value of∆E is independent of applied magnetic field and therefore we

rule out a magnetic origin for the excitations (see Supp. Info. for details). Moreover, the value of
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∆E is symmetric with respect to the bias polarity and it is independent of the charge state, which is

fingerprint of a vibronic origin. We emphasize that these twofeatures with similar values of∆E are

observed for two additional junctions, each of which contains a single Fe4 molecule. A discussion

on the features of these additional junctions are presentedin the Supporting Information. However,

not all the Fe4 molecular junctions show FC blockade as we discuss later.

The zero-bias conductance suppression may originate from the FC blockade effect17,24 which

occurs when the dimensionless electron-vibron couplingλ is strong, i.e.λ ≫ 1. So far, direct

experimental evidence of the effect has been reported for carbon nanotubes2,3 and semiconductor

quantum dots,19 which are about 100 times larger in size than Fe4. Figure 2c illustrates the FC

blockade model. For a system with a large value ofλ , the equilibrium coordinates of the electronic

ground state greatly differ from those of an electronic excited state. In the present case of Fe4,

this corresponds to the case that the equilibrium geometry of the N charge state is very different

from that of theN + 1 charge state, as sketched in Figure 2c. A transition from the vibrational

ground leveln = 0 of theN state to the vibrational ground level of theN +1 state is exponentially

suppressed withλ .17 The low-bias gap observed in Figure 2b is due to the suppression of this

transition. However, the probability for transitions to occur from then = 0 level of theN state to

then 6= 0 levels of theN +1 state increases with a FC factor24

Fn,0 =
λ 2n

n!
e−λ 2

, (1)

wheren is a vibrational quantum number with frequencyω0, assuming that only one vibrational

mode is considered. Note that the FC factor only depends on the dimensionless quantitiesλ andn.

Transitions involving higher-energy vibrational levels (n 6= 0) start to contribute to the sequen-

tial tunneling whenn > λ 2/(2logλ ) ∼ λ 2 (see also Eq. (1)). The observed parallel lines in the

SET region in Figure 2b are due to such transitions and therefore the energy spacing∆E of the

lines corresponds tōhω0. The suppression of the conductance is predicted to be prominent for

equilibrated vibrons with zero relaxation time17 and forkBT ≪ h̄ω0, which meets our experimen-
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Figure 2:Franck-Condon blockade in a molecular junction containing a single Fe4 molecule.
(a) Differential conductance (dI/dV ) color map measured in an Fe4 molecular junction as a func-
tion of biasV and gate voltageVg. Low-bias sequential-electron tunneling (SET) is suppressed
belowVth = 7.4 meV and the Coulomb blockade cannot be lifted byVg. Periodic excitations ap-
pear within the SET regime at positive and negative bias. Theenergy spacing between excitations is
∆E = 2.6 meV. (b) Numerical derivative of thedI/dV color plot shown in (a). Periodic excitations
running parallel to the Coulomb diamond edges become more visible. (c) Schematic representa-
tion of the Franck-Condon model for strong electron-vibroncouplingλ . For high values ofλ , the
equilibrium coordinates in adjacent charge states are significantly shifted from each other. Then,
vibronic ground state to ground state transitions become exponentially suppressed but ground-state
to excited-states become available whenV matches the energy of the excited vibrons (nh̄ω). (d)
CalculateddI/dV color map by introducing the electron-vibron coupling in the rate equations.25

The values of the temperature and the vibron energy used in the model are those obtained from the
experiment (T = 1.8 K and∆E ∼ h̄ω0 = 2.6 meV). The best agreement is obtained forλ = 2.21.
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tal conditions. The FC blockade is lifted when the bias voltage matches a multiple of vibrational

energy,nh̄ω0, at a threshold bias voltageVth of aboutλ 2h̄ω0.17 Using the experimental values of

h̄ω0 andVth, we extract the valueλ=1.7.

To corroborate our interpretation of the observed conductance map we simulate adI/dV map

using a minimal model Hamiltonian24,25with h̄ω0=2.6 meV obtained from the measurements. We

consider up ton = 10 and solve the standard master equation to find thedI/dV map.25 A good

quantitative agreement is found forλ = 2.21. For simplicity, the Hamiltonian includes neither spin

degrees of freedom of an electron nor the magnetic moment of the Fe4, which is justified because

the parallel lines do not change with an applied magnetic field. The resultingdI/dV map, shown

in Figure 2d, reproduces the main features of the measurements, such as the the low-bias gap and

the presence of equally spaced lines running parallel to thediamond edges.

The value ofλ can be independently estimated from thedI/dV peaks ((dI/dV)max) of the

SET excitations as a function ofV at a givenVg.3,9 Figure 3a showsdI/dV versusV at a fixed

Vg = −0.711 V. The background contribution due to direct tunneling between the electrodes is

subtracted from the data. The solid line in Figure 3a represents a fit of(dI/dV)max to the FC factor

defined in Eq. (1) withλ = 2.05, which, within the uncertainty, is consistent with the value of λ

estimated from the low-bias gap in Figure 2. Note that the curve does not fit the low-bias region

because Eq. (1) does not take into account contributions from non-resonant co-tunneling which

are important in this region. The averageλ obtained from differentdI/dV traces is 2.0±0.2 (see

Supp.Info.)

The value ofω0 can also be independently estimated from the temperature dependence of

dI/dV in the Coulomb blockade regime. Figure 3b showsdI/dV at different temperatures mea-

sured atVg = −0.700 V andV = 12 mV, which corresponds to the Coulomb blockade regime

close to the diamond edge at positive bias. Note thatV = 12 mV is greater than the threshold bias

to lift the Franck-Condon blockade. The value ofdI/dV increases non-linearly with increasing

temperature. Such an increase of the conductance with the temperature can be explained with the

absorption by the tunneling electrons of one or more vibrational quanta of the molecule3 (see Fig-
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Figure 3: Analysis of the Franck-Condon blockade. (a) Differential conductance measured as
a function ofV at Vg = −0.711 V. The background signal due to direct tunneling betweenthe
electrodes has been subtracted. The solid line is a fit to(dI/dV)max using the Franck-Condon
progression described in the main text. We obtainλ = 2.05, a value that is consistent with the
λ estimated from the size of the low-bias gap and the value obtained with the rate equations. (b)
Temperature dependence of(dI/dV)max measured atVg =−0.700 V andV = 12 mV correspond-
ing to the Coulomb blockade regime. From the fit (solid line) we obtainh̄ω0 = 2.3 meV. This
energy is consistent with the energy spacing of the excited vibronic states (∆E = 2.6 meV).
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ure S5 in the Supp. Info.). Previously forbidden transitions become available and side-bands of

sequential tunneling may appear in the Coulomb blockade regime parallel to the Coulomb diamond

edges.1,3,18,26It is observed in carbon nanotubes3 that the intensity of the absorption sidebands in-

creases with increasingT . If the enhanced tunneling in the Coulomb blockade regime isindeed

due to the absorption of vibrons, the temperature dependence obeys Bose-Einstein statistics so

that (dI/dV)max ∝ 1/kBT × 1/(exp(h̄ω0/kBT )− 1).3 The solid line in Figure 3b is a fit to the

experimental data with̄hω0 = 2.3 meV, which is consistent with the energy spacing of the ex-

citations∆E = 2.6 meV. Note that thedI/dV maps measured at 1.8 K do not show evidence of

absorption-induced side-bands, indicating a fast vibrational relaxation of the vibrational mode26

in combination with a lowT compared with the energy of the vibron (kBT ≪ h̄ω0). Only by in-

creasing temperature we start to observe signatures of peaks within the Coulomb blockade region

because vibrons can be excited and their relaxation time becomes longer (see Supp. Info.).

In this work we do not include the effect of oscillations of the center of motion of the Fe4

relative to the electrodes, although the frequency could beof the order of meV, as shown for

the C60 molecule.5 The oscillations are coupled to the Fe4 via displacement-dependent tunneling

matrix elements.27 We estimate that the coupling strength of the oscillations can not induce Franck-

Condon blockade. More details on this issue can be found in the Supp. Info.

So far, the analysis of our experimental data consistently shows that the measured conductance

map is due to the FC blockade effect withh̄ω0 = 2.6 meV andλ ≃ 2.2. Henceforth, we present re-

sults obtained from DFT calculations on the Fe4 molecule and compare them with the experimental

values. We first find the optimized geometries for the neutralFe4 and singly-charged Fe4 molecules

using DFT. Then, we calculate the normal modes of the neutralFe4 molecule within the simple

harmonic oscillator approximation. In our calculations, we consider only an isolated Fe4 molecule

without Au electrodes. This is justified because the Fe4 molecule is not covalently bonded to the

electrodes. For each normal mode, we compute the dimensionless coupling constant25 from

λ =

√

ω
2h̄

ΩT M(R0−R′
0), (2)
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whereω andM are the normal-mode frequency and the square diagonal matrix of atomic masses,

respectively. ΩT is the transpose of the mass-weighted normal-mode column eigenvector with

ΩT MΩ = 1. Here,R0 andR′
0 are column vectors corresponding to the optimized coordinates of

the neutral and charged Fe4 molecules, respectively.

Our DFT calculations show that only three vibrational modeswith energies 2.0, 2.5 and 3.7 meV

have a value ofλ greater than unity such as 1.27, 1.33 and 1.46, respectively, as shown in the inset

of Figure 4a. The rest of the vibrational modes have a value ofλ much lower than unity except

for several tens of modes withλ of the order of 0.1, as shown in Figure 4a. The three vibra-

tional modes have energies close to the experimentally extracted energy values, and the coupling

constants are similar to the experimental values. Despite having three normal modes withλ > 1,

our transport calculations show only one broaddI/dV peak at the corresponding multiples of the

vibrational excitation. This is due to the thermal broadening at 1.8 K (see Fig. S6 in Supp. Info.).

We now analyze the characteristics of the vibrational modesin order to understand why only a

few of them have a strong coupling constant. The three modes with strong coupling are shown in

Figure 4b-d, where the dashed vertical lines represent they axis. The Fe4 molecule of interest has

twofold (C2) symmetry about this axis. Movies of the three modes are available in the Supporting

Information. According to the group theory,28 all the normal modes of the C2 symmetric Fe4

molecule can be classified into symmetric and antisymmetricmodes about they axis, or A and

B representations, respectively. A half of the non-zero-frequency normal modes belong to the

A representation and the other half to the B representation.We find that all the modes in the B

representation have a very small value ofλ , which is less than 0.00045 in our numerical accuracy,

and that the value ofλ for the modes in the A representation varies. For example, the normal

mode shown in Figure 4e, belongs to the B representation, andit has an electron-vibron coupling

constant of 0.0001. There are several distinctive featuresin the three modes with strong coupling

compared to other modes with weaker coupling: (i) The normalmodes in Figure 4b-d belong to the

A representation, (ii) the major vibrations are from heavier elements such as Fe, O, and C atoms,

and (iii) the modes have low frequencies.
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(a)

hω0=2.0 meV(b)

(c) hω0=2.5 meV hω0=3.7 meV(d)

hω0=3.4 meV(e)
hω0=1.90 meV(f)

Figure 4:DFT results for Fe4 SMM. (a) Calculated electron-vibron coupling constant vs.h̄ω for
Fe4. The inset is a zoom-in ofλ vs h̄ω showing the five normal modes illustrated in (b-f):h̄ω=2.0,
2.5, 3.7, 3.4, 1.9 meV. The Fe4 molecules in (b-f) are projected onto thex-y plane, with the dashed
vertical lines indicating they axis. The color code in (b-f) is Fe (orange), O (red), C (gray). H
atoms and phenyl rings are not shown. The length of the arrowsrepresents the magnitude of the
displacements. The circled dot and circled cross are displacements along the positive and negative
z axes. Only significant displacements are shown.
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These observations concerning the strength of the electron-vibron coupling can be rationalized

as follows. The couplingλ in Eq. (2) is proportional to the inner product between the normal-mode

eigenvectors and the difference vector in the equilibrium coordinates of the neutral and charged

Fe4 molecules. Considering the twofold symmetry of an isolatedFe4 molecule, it is likely that

this symmetry can be preserved even for an Fe4 molecule bridged between electrodes, because the

molecule is not chemically bonded to them. If the charged Fe4 molecule has the same twofold

symmetry, then the coordinate difference vector also bearsthe twofold symmetry. This implies

that for normal modes in the A representation, each term in Eq. (2) contributes to the coupling

with the same sign so that the coupling constant can become large. However, when normal modes

are in the B representation, terms in Eq. (2) cancel out, and the coupling constant becomes very

small (i.e.λ ≪ 1). See Figure 4e for an example. Note that this result suggests that a Fe4 molecule

chemically bonded to electrodes may not bring strong electron-vibron coupling due to possible

broken molecular symmetry. Furthermore, among the normal modes with the twofold symmetry,

the coupling is expected to be stronger when the vibrations mainly arise from heavier elements

such as Fe, O, and C atoms, rather than H atoms. This is due to the atomic mass term included in

Eq. (2).

Finally, we discuss possible sources of discrepancy between the experimental data and the DFT

calculations. The first source is that the distribution of anextra electron added (or tunneled) to a

neutral Fe4 molecule has not been experimentally determined. The DFT-calculated value ofλ

depends on the difference in equilibrium coordinates of theneutral and charged Fe4 SMMs, as

shown in Eq. (2). Changes in the distribution of the extra electron can significantly change this

difference and they may break the molecular twofold symmetry. In our DFT calculations, we

consider one particular charge distribution where the extra electron is uniformly distributed over

all the four Fe ions. In the case of carbon nanotubes, it was reported that strong electron-vibron

coupling is induced when the tunneled electron is localized.2 The second source is that the value

of λ depends on environmental factors,7,29yet DFT calculations do not fully capture them, such as

image charge effects, localized charge impurities, and various molecular orientations relative to the

12



electrodes. In this direction, note that we do not observe FCblockade in all Fe4 devices. Similarly,

a variation ofλ for different devices has also been observed for carbon nanotubes29 and C140

molecules.7 The aforementioned two sources are correlated and make it difficult to theoretically

precisely assign a particular mode as the cause of the FC blockade. A further study along this

direction is interesting but beyond the scope of the currentwork.

In conclusion, we have studied single-electron transport via an individual Fe4 SMM in three-

terminal devices. We have observed a suppression of the low-bias conductance and explained its

origin with a FC blockade effect caused by strong coupling between the electric charge and a vi-

brational mode of the Fe4. From a detailed comparison with the FC model, we extracted the values

of the vibron frequency and electron-vibron coupling constant from our experimental data. The

values agree with the DFT-calculated results, which also suggest the possibility of increasing the

coupling by avoiding chemical bonding at the interface. This is the first direct experimental evi-

dence of the FC blockade effect for a small magnetic moleculewith a diameter of about 2 nm. Our

findings will stimulate further research on the role of molecular vibrations in molecular transport

and more specifically on the impact of such strong electron-vibron coupling on the molecular spin

degrees of freedom.
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