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The above question is frequently asked by theorists who are interested in graphene as a model 

system, especially in context of relativistic quantum physics. We offer an experimental answer by 

describing electron transport in suspended devices with carrier mobilities of several 10
6
 cm

2
V

-1
s

-1
 

and with the onset of Landau quantization occurring in fields below 5 mT. The observed charge 

inhomogeneity is as low as 10
8
 cm

-2
, allowing a neutral state with a few charge carriers per 

entire micron-scale device. Above liquid helium temperatures, the electronic properties of such 

devices are intrinsic, being governed by thermal excitations only. This yields that the Dirac point 

can be approached within 1 meV, a limit currently set by the remaining charge inhomogeneity. 

No sign of an insulating state is observed down to 1 K, which establishes the upper limit on a 

possible bandgap.  
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Graphene has a unique conical spectrum and its electronic properties at low energies E are 

often described by a two-dimensional Dirac-like equation.
1,2

 The resulting difference from the 

conventional electronic systems becomes most prominent and interesting near zero E where 

graphene’s Fermi surface shrinks into a point (Dirac point). Unfortunately, experimental devices 

are always subject to disorder, finite size and other factors limiting graphene’s both quality and 

homogeneity. In particular, local variations of chemical doping and/or strain
3
 disallow the Dirac 

point (DP) to be achieved uniformly over the entire device area so that neutral graphene is 

usually split into a system of electron-hole (e-h) puddles,
4,5

 a state usually referred to as the 

neutrality point (NP). This charge inhomogeneity impedes investigation of graphene’s intrinsic 

properties in the immediate proximity of the DP. 

The standard devices made from graphene on SiO2 typically exhibit density fluctuations 

n ~5×10
10

 cm
-2

 (ref 4) and field-effect mobilities  ~10,000 cm
2
V

-1
s

-1 
(ref 1) which effectively 

smears the DP over E 20 meV. Significant progress has recently been achieved by depositing 

graphene onto or encapsulating it within atomically flat boron nitride,
6,7

 in which case n can 

reach nearly 10
9
 cm

-2
 and  up to 500,000 cm

2
V

-1
s

-1
.
7
 An alternative approach is to use current-

annealed suspended devices, which despite the 2-probe geometry usually exhibit  up to 

200,000 cm
2
V

-1
s

-1 
and n <10

10
 cm

-2
.
8–11

 More recently, even higher  10
6
 cm

2
V

-1
s

-1
 were 

reported in some suspended devices.
12,13

 However, this quality is still lower than that of graphene 

crystals found on top of bulk graphite, in which case quantum mobility Q was found 10
7
 cm

2
V

-

1
s

-1 
at a fixed carrier concentrations n 3×10

9
 cm

-2
.
14

 Unfortunately, such crystals are in direct 

contact with graphite and do not allow one to either vary n or measure transport properties at the 

DP.  



 

3 

In this Letter, we use two types of suspended monolayer graphene devices with  >10
6
 cm

2
V

-

1
s

-1
 at n <2×10

10
 cm

-2
 to address two common questions that are often posed in theory papers 

discussing graphene’s intrinsic properties (see, e.g., refs. 15–21). How close is it possible to 

approach the Dirac point in state-of-the-art devices? And is there any many-body or spin-orbit 

bandgap? We show that the DP can be reached within 1 meV, a limit given by our devices’ 

homogeneity n ~10
8
 cm

-2
. At temperatures T >10 K, for all intents and purposes this is perfect 

graphene because both smearing and scattering at the DP is determined by thermal excitations 

only. Furthermore, devices’ characteristics continue to evolve smoothly down to 1 K with 

conductivity  approaching linearly a finite value as T decreases. This minimum conductivity 

min is close but still notably higher than min = 4e
2
/h predicted in the ballistic limit.

22,23
 No sign 

of diverging resistivity  yields a conservative estimate on any possible bandgap as <0.5 meV. 

Figure 1a shows a micrograph of one of our suspended graphene devices, which was fabricated 

following the procedures described in refs. 8,10,11. In short, graphene was cleaved onto an 

oxidized Si wafer (300 nm SiO2), and metallic contacts (Cr 3 nm/Au 100 nm) were deposited on 

top as shown in Figure 1a. Approximately a half of SiO2 was etched away, allowing graphene to 

be suspended between the contacts whereas the remaining oxide served as a gate dielectric. In the 

second type of suspended devices, graphene was clamped between two metal pads to achieve 

better mechanical stability. To this end, graphene was transferred onto Au pads prefabricated on 

the Si wafer, and Cr/Au contacts were deposited on top of them, clamping graphene between two 

metal layers. This stopped graphene from moving and scrolling. Let us mention that the latter 

approach allowed us to fabricate a number of 4-probe devices with graphene crystals being 

etched into the proper Hall bar geometry.
24

 Unfortunately, we found it impossible to current-

anneal such Hall bars uniformly, and high  were achieved only in the 2-probe geometry (Figure 
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1a). Accordingly, we discuss below only the latter devices. They were annealed in situ by using 

current densities ~1 mA/μm for non-clamped devices (whereas the clamped ones required 

currents <0.2 mA/m). All our devices had width W larger than their length L (typically, 

L 2m), which we believe is important to provide homogenous annealing.  

Figure 1. Electron transport in suspended graphene devices. (a) Scanning electron micrograph of 

one of our suspended devices (false colors: graphene is light blue; contacts are golden). Note 

some contamination over the nearest graphene region that was not annealed whereas the other, 

annealed region looks pristinely clean. (b) Device resistance R as a function of Vg at different T 

for a clamped device. The NP occurs at Vg = -0.65 V indicating electron doping. To convert Vg 

into n, we have measured SdH oscillations, which yielded a constant capacitance of typically 

~3×10
10
e cm

-2
V

-1
, depending on thickness of the remaining oxide (e is the electron charge). (c) 

 (red curve) and  (black) for the device in (b) after subtracting R0 4.5 k. 

Resistance R as a function of applied gate voltage Vg is shown in Figure 1b for one of our 

clamped devices. Examples for non-clamped graphene can be found in refs. 25,12,13. All our 

devices (>10) exhibited similar behavior and  within a relatively narrow range of 0.5–

2×10
6
 cm

2
V

-1
s

-1
 taken at n = 10

10
 cm

-2
. The only notable difference was in remnant doping n. In 
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non-clamped devices, n was <10
9
 cm

-2
 (peak in R(Vg) was centered near zero) whereas clamped 

devices exhibited electron doping with n >10
10

 cm
-2

 (Figure 1b).  

To analyze the devices’ quality, let us first use the standard approach assuming that electron 

transport in graphene is described by a combination of short- and long- range scattering 

mechanisms.
26,27

 This leads to two terms S and Lin graphene’s resistivity  = S + 1/neL 

which are both independent on n away from the regime of e-h puddles. In the 2-probe geometry, 

contact resistance RC must be taken into account which results in the total n-independent 

contribution R0 = S(L/W) + RC. The value of RC can accurately be estimated from the quantum 

Hall effect (QHE) measurements as a deviation of the 2-probe resistance from the quantized 

values. In our analysis, we have used R0 as a single fitting parameter to obtain (n) varying 

approximately  n away from the NP.
26,27

 An example of this linearization procedure is shown in 

Figure 1c. The fitting parameter R0 differed from RC found from the QHE by no more than 10%. 

It is important to note that by definition  = L/(1+SneL) and, in ultra-high- devices, S 

rather than L may in principle become the characteristic defining electronic quality. However, 

this is not our case because S typically is 50  for lower quality graphene (see, e.g., refs. 6,27), 

and it is reasonable to expect weaker short-range scattering in current-annealed devices. If we 

take the above value of S as the worst case scenario, the difference between  and L in our 

devices would not exceed 20% for the entire reported range of n. This assures that  = L is a 

good approximation for our experiments.  

Figure 1c shows that  in our devices is well above 10
6
 cm

2
V

-1
s

-1
. The upper boundary for n 

here is chosen to be 1.5×10
10

 cm
-2

 because, for larger n, the mean free path l becomes 

comparable to L (see below) and because R rapidly approaches RC (Figure 1b), which makes the 

fitting procedure less reliable. In addition, a contribution of S may lead to a gradually increasing 
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difference between  and L at higher n. As for the lower boundary, we have chosen to cut off the 

rapidly increasing  at 2.5×10
6
 cm

2
V

-1
s

-1
. One of the reasons for this somewhat arbitrarily cutoff 

is that low- graphene on SiO2 is often reported to exhibit a superficially similar divergence at 

the NP which is an artifact. It arises from a nearly constant (n) in the regime of e-h puddles, 

which leads to the apparent  = /ne diverging as 1/n. This is certainly not our case: the increase 

in  occurs at n >10
9
 cm

-2
, that is, far away from the e-h regime at low T (see below). It is also 

important to mention that for  ~10
6
 cm

2
V

-1
s

-1
 and our highest n,   nel    reaches 1 m. 

Additional scattering at device’s boundaries may reduce the apparent  for high n as reported in 

ref 7. Therefore, our devices were intentionally made of several m in size, and the condition 

W > L > l is satisfied over the whole presented range of n. Another possible explanation for the 

non-constant  in Figure 1c (and in previously reported suspended devices
8
) could be RC varying 

with n.
24,28–30

 However, RC should probably increase near the NP, reflecting poorer contact 

between undoped graphene and a metal.
24,28–30

 If this contribution were significant, the same 

analysis would yield even higher  and, probably, lead to a stronger e-h asymmetry in .
24

 On 

balance, we believe that the increase in  by a factor of >2 (see Figure 1c) is a real effect. It may 

originate from a decrease in scattering efficiency for a particular type of defects. An alternative 

explanation consistent with the behavior of (n) is the renormalization of the Fermi velocity vF 

that can increase by a factor of 3 in suspended graphene for the same range of n (see ref. 12
 
and 

our discussion below).  

Although the above analysis is widely used in literature to evaluate , it should be considered 

only as a qualitative estimate. This calls for an alternative way of quantifying graphene’s quality. 

To this end, a good measure is the magnetic field Bq at which Shubnikov-de Haas (SdH) 
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oscillations first appear.
31,25,12,13

 This value is related to Q through the expression 

QBq  cq = 1, where c is the cyclotron frequency and q the small-angle scattering time. The 

formula means that carriers can complete their cyclotron orbits before being scattered. To 

accurately determine q it is necessary to analyze SdH oscillations’ amplitude as a function of 

B.
31,32

 However, because the dependence is exponential, Bq can be estimated within a factor of 

typically 30% as a value of B in which the first SdH oscillation becomes noticeable at low T. 

This rule of thumb is well known for conventional electronic systems
32

 and also has been noted 

for graphene on SiO2.
27,31

 

Figure 2. Quantum mobility. (a) R(Vg) in various small B for the clamped device in Figure 1. The 

curves are shifted vertically for clarity. (b) Similar measurements for another, non-clamped 

device. Splitting for  =1 is apparent already at 60 mT, and the QHE plateau  =-2 fully 

develops at 100 mT. (c) Color map of R(n,B) for the device in (a). The arrows indicate  =±2. 

The bright central region at zero n shows that a gap is opened by B >50 mT. Five times higher B 

were necessary to open this gap for the device in (b). 

As an explicit measure of Bq in our experiments, we have chosen the field at which both SdH 

maxima appear at filling factors  =±2, which results in a minimum in R(Vg) at the NP 

(Figure 2). One can see the development of such a minimum in Figures 2a and 2b. For these two 

devices, the minimum appears in Bq 4 and 6 mT, which yields Q 2.5 and 1.6×10
6
 cm

2
V

-1
s

-1
, 
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respectively (also, see Supporting Information). The former value is in good agreement with 

transport  found in Figure 1c for the same device and same n. Note that the described procedure 

of defining Q has previously been verified by using the 4-probe geometry for low- graphene
31

 

and, also, for encapsulated graphene.
7
 In both cases, transport and quantum  were found to 

agree within a factor of 2. From a theoretical point of view, Q is limited by small angle 

scattering that destroys coherence along cyclotron orbits
33

 but is insufficient for reversing the 

momentum’s direction. Therefore,  must be ≥ Q with the equality referring to the case of large-

angle scatterers such as e.g. vacancies. Also, note that our typical values of Bq correspond to the 

main cyclotron gap (B) 20–40 K, larger than T employed in the measurements as required. If 

we were to use higher T, the minimum at the NP becomes smeared at T /3. If we were to use 

lower T, mesoscopic fluctuations (due to interference or spatial quantization) start obscuring 

nascent SdH oscillations (see the right shoulder in zero B in Figure 2a and the 4K curve in Fig. 

1b). Accordingly, for our highest- devices the inferred Q should be considered as the lower 

estimate.  

The onset of SdH oscillations provides a convenient way of assessing graphene’s quality and, 

for a given n, yields the same electronic quality as field-effect measurements in zero B. However, 

a wider use of this analysis is difficult. In high- devices, it limits the determination of Q to very 

low n whereas  can depend on n (see Figure 1c). Indeed, in our suspended devices SdH 

oscillations appear below 10 mT, that is, at n ~10
9
 cm

-2
. To relate quantum and transport  over a 

wider range on n would require measurements of (B) at different n. This presents another 

problem because in ultra-high- devices a gap can open at the DP in B as low as 50 mT 

(Figure 2c). The gap results in an exponential increase in  and can overwhelm nascent SdH 

peaks. Despite these limitations, Q refers to a real physical phenomenon (onset of Landau 
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quantization) and, therefore, provides a sensible measure of graphene’s quality especially for the 

2-probe geometry, in which the standard approach of defining the field-effect  has many other 

limitations discussed above.  

The appearance of SdH oscillations in B <10 mT and n <10
9
 cm

-2
 sets up an energy scale of 

3 meV, at which graphene’s intrinsic properties are not smeared and can be probed by 

magnetotransport (see, e.g., measurements of vF in ref 12). To approach even closer to the DP, 

we analyze the behavior of (n) in zero B. Figure 1b shows that the resistance peak continues to 

sharpen down to our lowest T and, in some devices, we found it smeared along the n-axis on a 

scale of only ~10
8
 cm

-2
 (Figure 3a). This corresponds to E 1 meV and implies that graphene’s 

conductance at the NP is provided by one electron per square micron or several per the entire 

device. To our knowledge, every other material exhibits an insulating behavior at such low n.  

Moreover, the energy separation between spatially quantized levels is E =2hvF/W 2meV and it 

is surprising that quantization effects remain so small: Our devices exhibit conductance 

fluctuations (e.g., 4K curve in Figure 1b) but no sign of an insulating state (Figure 3b). To this 

end, we note that decoherence is expected to increase near the DP
1,12 

which may suppress 

quantization effects. To avoid confusion, let us mention that a metal-insulator transition was 

previously reported for encapsulated graphene, and this was explained by Anderson 

localization.
34

 We attribute the difference between suspended and encapsulated graphene to a 

different density of intervalley scatterers, which presence is essential for localization.
1,34
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Figure 3. Height and broadening of the resistivity peak. (a) (n) for one of our devices. Inset: 

thermal smearing of the tip. (b) T dependence of  at the NP for 3 devices. The dashed line 

indicates the ballistic limit; the dotted one is 4e
2
/h. For the sake of generality, no contact 

resistance is subtracted, which would result in slightly higher values of NP.  

Figure 3b shows  at the NP (NP) as a function of T for three monolayer devices. NP 

increases linearly with T below 100 K and tends to saturate at higher T. The slope of the increase 

varies from sample to sample. This behavior is in agreement with the earlier reports on 

suspended graphene
35,8

 and a recent theoretical model.
36

 The latter suggests NP  T/ where  is 

the broadening of the DP due to short-range scattering. At higher T, thermal excitations lead to 

additional scattering and, therefore, saturation in NP(T). The steepest slope in Figure 3b is for 

the device with the highest  which is consistent with the model. Furthermore, NP in the low-T 

limit (min) is notably lower than ~4e
2
/h, the typical value of min for graphene on SiO2 (dotted 

line in Figure 3b) but still higher than min = 4e
2
/h expected in the ballistic limit (dashed).

22,23
 

The missing factor of  in min of low- graphene is consensually attributed to the presence of e-

h puddles.
37–39

 Our suspended devices exhibit little inhomogeneity, and the observed deviations 

from the ballistic limit are probably due to scattering at the contact interface.
40
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Figure 4. Thermal broadening of the DP. (a) The number of carriers in graphene, N, as a function 

of gate-induced n at different T. The dashed line shows N = n, and the solid curves are 

measurements. (b) Smearing of the DP for the same 3 samples as in Figure 3b. Symbols are the 

experiment; the curves are fits to the theoretical expression
13

 nT = (/6)(T/νF )
2
 + n where  is 

the reduced Planck constant. The blue and red dashed lines are for zero n and F =1 and 

2 10
6
 ms

-1
, respectively. The solid curve takes into account a finite n. 

In our suspended graphene with little inhomogeneity, it is instructive to analyze the thermal 

broadening of the DP. This is a qualitative effect, easily seen on the raw curves (see Fig. 1b and 

Supporting Information). To introduce some quantitative measure of the observed broadening, 

we suggest the following scheme. In Figure 4a, we have assumed that the observed min describes 

the limit of zero density and, therefore, the number of charge carriers can be evaluated as N =( -

 min)/e. At zero T and in perfect graphene, N should be equal to n induced by Vg, as shown by 

the dashed lines in Figure 4a. After taking into account different  for electrons and holes, the 

experimental data fall nicely on the plotted linear dependence N = n if the Fermi energy >T. 

Close to the DP, T induces additional carriers. The experimental curves in Figure 4a allow 

accurate fits by the equations derived in ref 13. To simplify the analysis, one can also employ the 
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analytical expression   )11.01( 22
TT nnnT  valid for n < nT. From these fits we determine the 

number of thermal-excited carriers at the DP, nT, which presents a quantitative measure for the 

DP broadening at different T (see Supplementary Information and ref. 13).  

Figure 4b plots nT(T) for 3 different devices. At high T, the number of thermal excitations is 

sample independent and evolves T
2
, as expected due to the linear density of states.

26,13
 We 

emphasize that this result is independent of the described model and will be the same for any 

chosen measure of the DP broadening. However, due to good agreement between our experiment 

and the theory
13

, we can take a step further and analyze the absolute value of the broadening. If 

we use the standard value of vF =110
6
 ms

-1
, the theory predicts ~4 times more carriers than 

observed experimentally (Figure 4b). To explain this disagreement, we recall that the Fermi 

velocity is renormalized at low energies. The best fit to our experimental data using a constant 

vF yields 210
6
 ms

-1
, which is in agreement with the previously observed values of vF for the 

same range of n (ref 12) and consistent with the increase in  in Figure 1c. The experimental data 

for (n) and nT(T) in Figures 1c and 4b also allow sensible fits by using the logarithmically 

diverging vF(n)
12

 but in our opinion this extension goes beyond the accuracy of our experiment 

and the reliability of theoretical assumptions (Supplementary Information). 

In the limit of low T, the experimental dependences nT intersect the y-axis, and this yields n. 

For the devices in Figure 4b, n 2–4×10
8
 cm

-2
. Such a high homogeneity is surprising and 

difficult to understand because metal contacts should result in a significant charge transfer into 

graphene. This should make graphene strongly doped near the Au contacts
40–42,24,30,28

 and, 

therefore, result in high charge inhomogeneity along the 2-probe device. In contrast, remnant 

doping n is usually tiny for conventional (non-clamped) devices.
8,10,11

 This can be explained by 

the Cr sublayer that is probably oxidized and effectively decouples graphene from the top Au but 



 

13 

nevertheless provides sufficiently low RC. Therefore, there is no contradiction as both n and n 

are small for non-clamped devices. The situation is different for the case of clamped devices in 

which n >10
10

 cm
-2

 but n is still ~10
8
 cm

-2
. This shows that the charge transfer does occur but 

is highly uniform so that n varies little (1%) over the devices’ entire length. We speculate that 

the homogeneous doping is related to the fact that our devices are nearly ballistic.
40

 The 

observation requires further theoretical analysis which is beyond the scope of the present paper.  

To conclude, we have answered the two questions posed in the introduction. By using 

suspended high- devices, it is possible to approach the Dirac point within 1 meV, and there is 

no bandgap in graphene larger than 0.5 meV. Some features in the reported behavior such as 

thermal smearing and an increase in  near the DP are consistent with the previously reported 

renormalization of the Fermi velocity at low energies. 
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ASSOCIATED CONTENT 

Transport measurements in magnetic field 

Our transport measurements were carried out in two He
4
-cryostats (equipped with 

superconducting magnets of 12 and 16 T) at temperatures from 1.5 K to 210 K by using the 

standard low-frequency (30.5 Hz) lock-in technique. In order to avoid an overheating of the 

electron system, excitation currents between 10 and 100 nA were applied. The residual magnetic 

fields were typically ~5 mT and ~14 mT for 12 and 16 T magnets, respectively. This offset was 

taken into account so that the behaviour was symmetric with respect to B (Figure S1). We note 

that, despite being relatively small and often neglected, such remnant B correspond to a cyclotron 

gap of a few meV, and ignoring this effect in ultra-high- graphene may lead to artefacts.  

 

Figure S1. Resistance as a function of gate voltage for several B varying from -4.25 mT to 

4.25 mT. The curves are shifted vertically for clarity, and the onset of SdH oscillations is 

indicated by the arrows. 

Figure S1 provides yet another example of the emergence of SdH oscillations in a clamped 

device. The measurements were performed at 4 K by using a 10 nA current. The splitting near the 
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DP becomes discernible at 3.75 mT. This is the smallest Bq we have so far observed in both 

clamped and unclamped devices. It corresponds to Q 2.810
6
 cm

2
V

-1
s

-1
.  

 

Dirac point broadening analysis 

We have used the standard transport expression for graphene, which assumes short and long 

range scattering: =0+1/en. This expression follows from the semiclassical Boltzmann 

equation, which validity limits are discussed in detail in refs. S1,S2. In order to use the 

Boltzmann equation near the DP, it requires the condition 2F/h >>1, where F is the Fermi 

energy,  the transport scattering time, and h the Plank constant. This condition can be re-written 

as 2l >> F, where l is the mean free path and F the Fermi wavelength. The expression is valid 

in our experiments, except for very low concentrations where the Fermi wavelength reaches the 

sample size.  

In order to find the concentration of the thermally-excited carriers nT we have used the theory 

presented in ref 13. Its main assumption is that conductivity  of graphene at zero T takes the 

form  = n. This expression is known to be a good approximation in the Fermi liquid regime F 

>T (with  = e) but its validity remains untested near the DP where the broadening takes place. 

For example, the theory
13

 does not take into account that  can depend on T and vF can change 

due to many-body effects. However, we expect this remains a reasonable approximation if 

 remains nearly constant in the studied density range.  
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Figure S2. (a) Conductivity as a function of concentration at 15K. The red arrow shows one of 

possible ways to define the thermal broadening of the DP. The green arrow indicates nT expected 

in theory. (b) Number of carriers in graphene as a function of n for T =5, 15 and 70K. The black 

arrows mark the DP broadening using the same definition as in (a). The red arrows show nT 

found from our theoretical fits. 

The DP broadening depends on both disorder and temperature. At low enough T the 

broadening is determined by disorder only. Figure S2a plots the curve of Figure 1c in a 

logarithmic scale. One can see that  stops changing with n at 1×10
9
cm

-2
. The DP broadening 

can be estimated as the intersection of the asymptotic lines at high and low concentrations as 

shown in Fig. S2a. This approach can apparently be used to quantify the broadening on the 

experimental curves. However, in order to take into account changes in  for different devices, 

we have chosen to analyze N = /e (see Fig. 2Sb). At high T, we have found the behavior of N 

sample-independent. If the DP broadening is again defined as the intersection of the 

corresponding lines, Figure S2b shows that this representation leads to slightly different absolute 

values (cf. Figs. S2a,b).  
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To achieve a better-than-logarithmic accuracy in defining the DP broadening, we employ the 

theory developed in ref 13, which involves the full fitting of curves N(n) as discussed below. At 

finite T, the Fermi energy  is a function of n and T: 
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  is the number of thermally excited electrons (holes). nT is the only adjustable 

parameter that depends on vF. The number of charge carriers is then determined by
13
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which was used to fit the experimental curves in Figure 4a. The example of the fit is shown in 

Figure S3 for the 70K curve of Figure S2b.  

Instead of using the two equations presented above (the fit involves numerical evaluation of the 

integrals) we can use a simpler equation. In the case of n<nT, the concentration of the charge 

carriers as a function of T and n is given by
13 
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Note that the used equations depend only on T and n and are “thermodynamic” values, that is, do 

not contain scattering rates which determine temperature dependence of .  
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Figure S3. Concentration of the charge carriers in graphene, N, as a function of the gate-induced 

concentration n. The solid black line is obtained from the resistance measurements at 70 K. The 

red dotted line is the best fit with nT = 1.7×10
9
 cm

-2
. The blue dashed line represents an ideal 

graphene at zero temperature. 
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