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Graphene is only one atom thick, optically transparent, chemically inert and an excellent 

conductor. These properties seem to make this material an excellent candidate for applications in 

various photonic devices that require conducting but transparent thin films. In this letter we 

demonstrate liquid crystal devices with electrodes made of graphene which show excellent 

performance with a high contrast ratio. We also discuss the advantages of graphene compared to 

conventionally-used metal oxides in terms of low resistivity, high transparency and chemical 

stability. 
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Graphene is the first example of truly two-dimensional materials1. Only one atom thick, it 

demonstrates high crystallographic quality2 and ballistic electron transport on the micrometer 

scale. Such unique properties make it a realistic candidate for a number of electronic 

applications. In particular, graphene is an attractive material for optoelectronic devices, in which 

its high optical transmittance, low resistivity, high chemical stability and mechanical strength 

seems to make it an ideal optically-transparent conductor. 

Transparent conductors are an essential part of many optical devices. Traditionally, thin 

metallic or metal-oxide films are used for these purposes (for a review see3). At the same time 

there is a constant search for new types of conductive thin films, as existing technologies are 

often complicated (e.g. thin metallic films require anti-reflection coating) and expensive (often 

using noble or rare metals). Furthermore, many of the widely used metal oxides exhibit 

nonuniform absorption across the visible spectrum4 and are chemically unstable (for instance the 

commonly used Indium Tin Oxide (ITO, In2O3:Sn) is known to inject oxygen5 and indium6 ions 

into the active media of a device). Recently carbon nanotube films have been produced7 and 

used as an alternative transparent conductor in various photonic devices including electric field-

activated optical modulators, organic solar cells8 and liquid crystal displays9. The experimental 

discovery of graphene10 brought a new alternative to the ubiquitous ITO. The optical properties 

of this material are now being widely tested11, , , ,12 13 14 15, and graphene films have recently been 

used as transparent electrodes for solar cells16.   

In this letter we report on the use of graphene as a transparent conductive coating for photonic 

devices and show that its high transparency and low resistivity make this two-dimensional 

crystal ideally suitable for electrodes in liquid crystal devices. We will also argue that graphene, 

being mechanically strong, chemically stable and inert, should improve the durability and 

simplify the technology of potential optoelectronic devices.  
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Figure 1. (a) Schematic diagram of our liquid crystal devices with typical layer thicknesses in 

brackets: 1 – glass (1mm); 2 – graphene; 3 – Cr/Au contact surrounding graphene flake (5nm Cr 

+ 50nm Au); 4 – alignment layer (polyvinyl alcohol) (40 nm); 5 – liquid crystal (20μm); 6 –

alignment layer (40 nm); 7 – ITO (150 nm); 8 – glass (1 mm). The graphene flake is surrounded 

by a non-transparent Cr/Au contact. (b-e) Optical micrographs of one of our liquid crystal device 

using green light (505 nm, FWHM 23 nm) with different voltages applied across the cell: (b) 

V=8 Vrms; (c) V=13 Vrms; (d) V= 22Vrms; (e) V=100 Vrms. Overall image width is 30μm. The 

central hexagonal window is covered by graphene, surrounded by the opaque Cr/Au electrode. 

(f) An optical micrograph (in reflection, using white light) of a graphene flake on the surface of a 

1 mm thickness glass slide. The contrast is of the order of 6%. Overall image width is 10μm. (g) 
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The same image but in transmission. The flake is practically invisible. (h) Control device with no 

graphene in the opening of the Cr/Au contacts with V=100 Vrms applied across the cell. Since 

the electrode on the ITO-coated surface is continuous, there is a significant stray field within the 

window that distorts the liquid crystal structure, leading to the pattern shown.   

Graphene flakes were prepared by micromechanical cleavage10,17 on a glass microscope slide. 

They were first located using an optical microscope18 (Figure 1f,g) and then further identified as 

monolayer graphene using Raman microscopy19. Thin (70 nm) chromium/gold contacts were 

then deposited around the flakes, so the graphene crystal was effectively covering a window in 

the metallization, Figure 1a,b (this geometry also eliminates stray electric fields from the edges 

of the electrode). A planar-aligned liquid crystal devices were then fabricated using such 

graphene-on-glass films as one of the transparent electrodes, Figure 1a.  The other substrate was 

of a glass slide coated with conventional ITO.  Both substrates were coated with a polyvinyl 

alcohol alignment layer which was subsequently baked and then unidirectionally rubbed (ITO-

coated substrate only) in order to promote uniform alignment of the liquid crystal director. The 

device was then capillary-filled with nematic liquid crystal material E7 (Merck).  Applying a 

voltage across the liquid crystal layer distorts the crystal alignment, changing the effective 

birefringence of the device and altering the transmitted light intensity20. A control sample, with 

an opening in the metallization not covered by graphene, was also prepared (Figure 1h). Note 

that although we will limit our consideration of graphene-based liquid crystal devices by those 

with planar untwisted nematic liquid crystals, this technology could equally be applied to any of 

the various nematic liquid crystal device types (e.g. twisted nematic21, supertwisted nematic22, 

in-plane switching23 and vertically aligned nematic24 devices) and also to ferroelectric and other 

liquid crystal devices that use smectic phases. 
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Figure 2. Light transmission through the liquid crystal device as a function of voltage applied 

across the cell, normalized to the maximum transmission.  Inset: the same at low voltages. Solid 

blue curve:  in green light, 505 nm, FWHM 23 nm; dashed red curve: in white light. The data 

taken in white light practically coincide with those in green light for voltages above 10Vrms and 

are omitted from the main panel for clarity. From the oscillatory behavior the thickness of the 

liquid crystal layer is estimated to be ~20 μm, assuming that the birefringence of E7 is 0.225. 

An AC (square-wave) voltage was applied across the cells in order to reorient the liquid crystal 

director. The electro-optic properties were observed using an optical microscope with the device 

placed between crossed polarizers and the rubbing direction oriented 45o with respect to the 

polarizers. Above the expected threshold voltage of around 0.9 Vrms, a strong change in the 

transmission is observed (Figure 1b-e, 2) both in white and monochromatic light. The fact that 

the whole electrode area changes contrast uniformly suggests that the electric field is applied 

uniformly through the area of graphene and that the graphene has no negative effect on the liquid 

crystal alignment. The contrast ratio (between maximum transmission and the transmission when 

100 Vrms is applied across the cell) is better than 100 under illumination using white light, 

which is very good for this type of cell and demonstrates that graphene could indeed be used 

effectively as a transparent electrode for liquid crystal displays. No significant changes in 
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transmission were observed for the control sample, with only edge effects appearing due to the 

finite thickness of the cell, Figure 1h. 

We will now assess the quality of our liquid crystal devices, concentrating on such important 

issues as the transparency of graphene, its resistivity and chemical stability. Light absorption by 

graphene is presented on Figure 3(right inset) as a function of the number of layers. Each layer of 

graphene absorbs about 2%, which is significantly lower than that of conventionally used ITO 

(15-18% ). Such high transmittance is explained by a low electronic density of states in 

graphene14,15. 

 

Figure 3. Sheet resistance of a graphene device as a function of gate voltage with (solid red 

curve) and without (dashed blue curve) a layer of polyvinyl alcohol on top. Polyvinyl alcohol 

provides n-type doping, shifting the curve to negative gate voltages. The sheet resistance at zero 

gate voltage is ∼400 Ω. Left inset: capacitance of one of our liquid crystal devices as a function 

of voltage applied. Right inset: light absorption of free hanging graphene of different 

thicknesses.  

 The sheet resistance of undoped graphene is of the order of 6kΩ (one conductivity quantum 

per species of charge carriers). However, it can be reduced down to 50Ω by chemical doping10,25, 
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and even unintentional doping (due to molecules absorbed from the surrounding atmosphere, e.g. 

water) can be of the order of 1012 cm-2). In liquid crystal devices an electrode is usually in direct 

contact with an alignment layer (in our case polyvinyl alcohol). We have tested the doping of 

graphene with polyvinyl alcohol, by preparing a standard graphene device on a 300nm SiO2/Si 

wafer and measuring its gate response with and without a layer of polyvinyl alcohol on top of 

graphene  (Figure 3). The introduction of a layer of polyvinyl alcohol produces n-type doping of 

about 3×1012 cm-2. For this particular sample it resulted in a drop in the sheet resistance down to 

400Ω, which is an impressive result for a conductive coating with optical transmission of about 

98%. It is difficult to compare this result to ITO, as the resistance of In2O3:Sn films diverges 

strongly (in the order of tens of kΩ) when trying to obtain optical transmittance above 95%. ITO 

films with 95% transmittance demonstrate comparable sheet resistances of a few hundred Ohms, 

dropping to tens of Ohms at an optical transmittance of about 90%26. Similar or even lower 

resistances can be achieved for graphene by a variety of means: increasing the number of 

layers27, intentional doping, or by using samples with higher mobility28,29. 

An important issue for most ITO-based liquid crystal devices and other photonic devices is the 

chemical stability of the metal-oxide and the diffusion of ions into the active media. Such 

processes deteriorate the active media (for example via oxidation if oxygen is injected) and can 

lead to break-down at lower voltages. Furthermore, in liquid crystal displays the injected ions get 

trapped at the alignment layer, thus screening the applied electric field. This leads to the so-

called image sticking problem30 which is usually avoided by driving the liquid crystal cells with 

alternating voltage. 

One can generally expect that such issues can be avoided when using graphene, where its 

chemical stability should minimize the level of ion diffusion. To check this we have measured 

the capacitance of one of our liquid crystal devices, which has one electrode made of graphene 

and the other from ITO, when applying DC voltages of different polarities (Figure 3 left inset, 
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here positive voltage corresponds to higher potential on the ITO electrode). There is clearly a 

highly hysteretic response when applying positive biases, but no hysteresis has been observed at 

the opposite polarity. We attribute this observation to positive indium ions drifting into the liquid 

crystal from the ITO electrode, whereas no ions are injected from the graphene electrode. Similar 

liquid crystal devices constructed using ITO electrodes on both substrates produce the hysteretic 

response for both polarities. 

Although it is important to demonstrate the possibility and advantages of using graphene as a 

transparent conductive coating, the feasibility of its mass production is essential when 

considering realistic applications. No industrial technology can rely on the micromechanical 

cleavage technique that allows only minute quantities of graphene and, although sufficient for 

fundamental research and proof-of-concept devices, is unlikely to become commercially viable. 

Recently, large-area conductive films have been demonstrated by using chemical exfoliation of 

graphite oxide and then reducing it to graphene16, ,31 32. This could lead to a viable way of making 

thin graphene-based films with properties similar to those discussed earlier and using them for 

various photonic devices. However, so far this technique has not demonstrated the ability to fully 

recover the excellent conductive properties of graphene to recover33. We propose an alternative 

approach. It involves making a graphene suspension by direct chemical exfoliation of graphite 

(rather than graphite oxide), which is subsequently used to obtain transparent conductive films 

on top of glass by spin- or spray-coating. 

Crystals of natural graphite (Branwell Graphite Ltd.) were exfoliated by sonication in 

dimethylformamide (DMF) for over 3 hours. DMF “dissolves” graphite surprisingly well, and 

the procedure resulted in a suspension of thin graphitic platelets with large proportion of 

monolayer graphene flakes, DMF also wets the flakes preventing them from conglomerating34. 

The suspension was then centrifuged at 13,000 rpm for 10 minutes to remove thick flakes. The 

remaining suspension, consisting mostly of graphene and few-layer graphite flakes of sub-

micrometer size, was spray-deposited onto a preheated glass slide (Figure 4a,b) which yielded 
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thin (∼1.5nm) films over centimeter sized areas. These films were then annealed for 2 hours in 

argon(90%)/hydrogen(10%) atmosphere at 250oC. The transparency of such graphitic layers was 

approximately 90% (Figure 4b). 

 

Figure 4. (a) Scanning electron micrograph of a thin graphitic film obtained by chemical 

exfoliation and spray-coating. Inset shows the same area under higher magnification. (b) Light 

transmission through an original glass slide (left) and the one covered with the graphitic film 

(right). (c) Temperature dependence of the film’s sheet resistance (R∼exp(T0/T1/3) behavior is 

observed at T>10K, where T0 is a constant). Inset: the same data but for the low temperature 

interval (R∼exp(Δ/T) behavior is observed at T<10K, where Δ is a constant). The red lines are 

guides for the eye. 

 9



In order to measure resistivity of our films, a mesa structure in the shape of the Hall bar with 

typical dimensions of 1mm was prepared, and the four-probe resistance was measured as a 

function of temperature (Figure 4c). The high temperature region (above 10 K) is well described 

by exp(T0/T1/3) dependence, characteristic for variable range hopping in two dimensions35. The 

room temperature sheet resistance is of the order of 5 kΩ, which is already acceptable for some 

applications3,16, and can be decreased further by increasing the film thickness. Resistance at low 

temperatures deviates from the variable-range-hopping dependence but can be described by the 

simple activation dependence exp(-Δ/T) (see inset in Figure 4c). We attribute this low-

temperature behaviour to weak tunneling-like coupling between different flakes, possibly due to 

contamination with organic (DMF) residues. This indicates some potential for improvements as 

better cleaning and annealing procedures can potentially improve coupling between graphene 

crystallites and decrease the film resistance further. 

To conclude, high optical transparency, low resistivity and high chemical stability of graphene 

makes it an excellent choice for transparent electrodes in various optoelectronic devices. 

Furthermore, there are already several technologies that potentially allow mass production of 

thin graphene-based transparent conductors (besides the chemical exfoliation of graphite 

described in the present letter, one can also think of epitaxial growth of graphene on top of a 

metal surface, followed by a transfer of such a layer onto a transparent substrate). These 

techniques are capable of producing continuous graphene films of thickness below 5 monolayers, 

which is required for realistic applications. 

The authors are grateful to EPSRC for financial support. AKG and KSN also acknowledge 

support from the Royal Society, UK. 
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