
Imaging mechanical vibrations in suspended graphene 

sheets  

D. Garcia-Sanchez,1,2 A. M. van der Zande,3 A. San Paulo, 2 B. Lassagne,1,2 P. L. McEuen3  and A. 

Bachtold,*,1,2

1CIN2 Barcelona, Campus UAB, E-08193 Bellaterra, Spain 

2CNM-CSIC Barcelona, Campus UAB, E-08193 Bellaterra, Spain 

3Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA. 

* E-mail: adrian.bachtold@cnm.es 

 

We carried out measurements on nanoelectromechanical systems based on multilayer graphene 

sheets suspended over trenches in silicon oxide. The motion of the suspended sheets was 

electrostatically driven at resonance using applied radio-frequency voltages.  The mechanical 

vibrations were detected using a novel form of scanning probe microscopy, which allowed 

identification and spatial imaging of the shape of the mechanical eigenmodes.  In as many as half the 

resonators measured, we observed a new class of exotic nanoscale vibration eigenmodes not 

predicted by the elastic beam theory, where the amplitude of vibration is maximum at the free edges. 

By modeling the suspended sheets with the finite element method, these edge eigenmodes are shown 

to be the result of non-uniform stress with remarkably large magnitudes (up to 1.5 GPa). This non-

uniform stress, which arises from the way graphene is prepared by pressing or rubbing bulk graphite 

against another surface, should be taken into account in future studies on electronic and mechanical 

properties of graphene.  
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Graphene is a newly isolated material whose structure consists of a single layer of carbon atoms 

packed in a honeycomb crystal lattice1,2. Recently, stacks of graphene layers were suspended over a 

trench and clamped at the edges, obtaining a new type of nanoelectromechanical system (NEMS)3. 

Despite thicknesses all the way down to one atomic layer, these suspended stacks of graphene still 

maintain high crystalline order4, resulting in a NEMS with extraordinarily small thickness, large 

surface area, low mass density, and high Young’s modulus. Because of these excellent material 

properties, graphene NEMSs hold promise as very good detectors of mass, force and charge, and 

represent the ultimate limit of two dimensional NEMSs.  

Previous work has shown suspended graphene sheets can be mechanically actuated, and the 

resonant frequencies are extracted using optical interferometry. However, this measurement 

technique can not identify what the individual vibrational eigenmodes are3. In this work, we directly 

image the spatial shape of the eigenmodes using a scanning force microscope (SFM). While the 

eigenmode shape can match predictions for doubly clamped beams typically discussed in elastic 

beam theory text books, we also observe new exotic eigenmodes in as many as half the suspended 

sheets measured. These exotic eigenmodes would be impossible to identify using more traditional 

measurement techniques, such as optical or capacitive detection, which depend on the average 

position of the resonator3,5.  

Few-layer suspended graphene sheets were obtained by mechanical exfoliation6,7. Highly ordered 

bulk graphite was pressed down onto a degenerately doped silicon wafer patterned with trenches 

etched into the oxide and with gold electrodes defined between the trenches. Suitable candidates for 

measurement were identified optically8,9, looking for few-layer graphene sheets suspended over a 

trench and contacting at least one electrode.  A scanning electron microscope image of a suspended 

graphene sheet used in these experiments is shown in Figure 1a. 

The suspended graphene sheets were electrostatically actuated to become resonators by wiring 

them up as shown in Figure 1b. An oscillating radio frequency voltage VRF  was applied between the 

backgate and the graphene, resulting in an oscillating electrostatic force at the same frequency: 
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where VDC is the DC voltage applied to the gate, φ is the contact potential between the resonator and 

the gate, and 
z
C
∂
∂ is the spatial derivative of the capacitance between the resonator and the gate. 

 

 

Figure 1 Device and experimental setup. a, A scanning electron microscope image of a suspended 

graphene resonator. b, Schematic of the resonator together with the SFM cantilever. c Motion of the 

suspended graphene sheet as a function of time. A high-frequency term at fRF is matched to the 

resonance frequency of the graphene, and the resulting oscillation is modulated at fmod. 

 

The mechanical vibration of the resonator was detected using a recently reported SFM technique, 

which allowed the measurement of the resonance frequency as well as the shape of the eigenmode10. 

This technique is particularly suitable for the detection of low amplitude vibrations, which here are 
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typically of the order of 0.1 nm (see Supporting Information). As shown in Figure 1b, a SFM 

cantilever scans over the surface of the suspended sheet, while the resonator is being driven. The 

frequency fRF of the driving voltage VRF is set at (or close to) the resonance frequency of the 

resonator. In addition, VRF is modulated at fmod, )2cos())2cos(1( mod tftf RFππ− , so the resonator 

vibrations are sequentially turned on and off at fmod (Fig. 1c). While the SFM cantilever cannot 

follow the rapid oscillations at fRF, it can detect the height difference between the on and off states of 

the modulation envelope. In order to enhance the detection sensitivity to the vibrations, fmod is 

matched to the resonance frequency of the first eigenmode of the SFM cantilever.  At the same time, 

the topography is obtained with the second eigenmode of the cantilever to keep the tip at a constant 

height above the surface. Further details on the technique can be found in Supporting Information. 

 

  w(µm)   
l(μm) t(nm) min max f1(MHz) f2(MHz) Mode 
2.9 1 0.1 0.8 18 - Beam 
2.7 3 0.8 1.8 45 - Beam 
4.4 6 0.5 0.8 33 - Beam 
1.8 10 0.2 0.6 37 - Beam 
2.8 11 0.3 0.5 31 - Beam 
2.9 20 0.6 1.0 57 - Beam 
4.2 4 1.3 1.5 25 59 Edge 
2.8 5 0.8 1.0 47 - Edge 
3.5 6 1.0 1.4 33 70 Edge 
2.8 6 0.5 0.8 53 85 Edge 
2.9 10 0.7 1.5 26 - Edge 

 

Table 1. Resonator characteristics. l is the length of the resonator, t the thickness, w the width, and  

f1 (f2) the resonance frequency of the first (second) eigenmode. w can significantly vary along the 

resonator, so we report the minimum and the maximum width.  

 

Table 1 summarizes the dimensional characteristics of the suspended sheets that we have studied, 

such as the thickness t, length l, and width w, as well as the resonance frequencies. The measured 

quality factors are low (between 2 and 30). This low Q is attributed to energy dissipation to air 

molecules since the SFM technique is operated at atmospheric conditions10,11. The shape of the 

eigenmodes does not change as the frequency is swept (within a same resonance peak of the 
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amplitude versus frequency). All measurements are performed in the linear amplitude response 

regime. See Supporting Information for further details.  

 

Figure 2 Graphene resonator with no buckling. a, Measured topography. The image reveals 

irregularities on the surface of the resonator, presumably due to contamination or bulk graphite 

residue. t = 11 nm, l  = 2.8 um, wmin = 0.3 um and wmax  = 0.5 um. b, Measured shape of the 

eigenmode at 31 MHz (raw data). VDC-φ  = 3V and VRF = 60mV. The amplitude of vibration is in 

arbitrary units. c, Shape of the eigenmode at 31 MHz obtained using FEM simulations without any 

stress. d, Eigenmode along the line indicated in Fig 2b. 

 

The SFM technique yields high resolution images of the shape of the vibration eigenmodes, since 

the scanning SFM tip measures the amplitude of vibration as a function of position. We find two 

distinct types of eigenmodes in the suspended graphene resonators. Figures 2a and 3a show the 

height topography images of two different suspended graphene sheets with thicknesses of 11 and 6 

nm. Figures 2b and 3b,c show the corresponding eigenmodes with respective resonance frequencies 

31, 53, and 85 MHz.  For some resonators, the amplitude of vibration remains uniform across the 

width of the sheet similar to standard beam resonators (Fig. 2b), while, for others, the vibrations are 
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the largest in amplitude along one of the free edges (Fig. 3b and c). We call the former modes “beam 

modes”, and the latter “edge modes”. 

 

 

Figure 3 Graphene resonator with local buckling. a, Measured topography. t = 6nm, l = 2.8um, 

wmin  = 0.5 um and wmax = 0.8 um. The maximum out of plane displacement of the buckling is 37 nm. 

b-c, Shape of the first and the second eigenmodes (raw data). VDC-φ = 3V and VRF = 40mV. The 

amplitude of vibration is in arbitrary units. d, Topography obtained using FEM simulations on a 

stressed graphene sheet. The maximum displacement is 36 nm. See the text for the boundary 

conditions. e-f, Shape of the first and the second eigenmodes using FEM simulations. g, Shape of the 

two first eigenmodes using FEM simulations without any stress. The resonance frequencies are 17 

and 46 MHz.  

 

Let us first compare the beam modes to predictions from the elastic beam theory, which describes 

the dynamics of a linear resonator with a uniform cross-section12. A beam under weak uniform 

tension T is predicted to have a fundamental mode resonance frequency of 
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where the shape of the first eigenmode along the beam axis x is predicted to be 
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where the Young’s Modulus is E =1TPa, and the mass density is ρ = 2200 kg m-3.  Taking the values 

l = 2.8 μm and t = 11 nm for the graphene sheet shown in Figure 2 and assuming T = 0, equation 2 

predicts a resonance frequency f1= 31 MHz in excellent agreement with the experimentally 

measured value.  In addition, we find that equation 3 qualitatively describes the measured 

eigenmode shape (as shown in Figure 2d). Note, however, that equations 2 and 3 are calculated 

when the resonator is perpendicular to the clamping edge and has a constant width along the beam 

axis. The topography image of the suspended sheet shows that this is not the case (Fig. 2a). We have 

developed a model based on the finite element method (FEM) to take these complications into 

account (see Supporting Information). Figures 2c and d show the predicted eigenmode shape of the 

resonator according to FEM.  The predicted eigenmode has resonance frequency of 31MHz, in 

excellent agreement with the measured value. The shape agrees qualitatively with the measurements 

and remains very similar to the predictions of the elastic beam theory.  

Not all suspended graphene sheets display such conventional eigenmodes.  The edge modes shown 

in Figures 3b and c are completely unpredicted by standard elastic beam theory.  However, the 

topography image of the suspended sheet in Figure 3a shows that the resonator is buckled out of 

plane at one edge.  This local buckling is measured to have a maximum out of plane displacement of 

37 nm and suggests the presence of non-uniform stress in the resonator.  The edge modes are 

frequently, but not always, observed in resonators for which the suspended sheet displays local 

buckling.  

To understand the relationship between local buckling and the edge modes, we calculate the effect 

of strain with simulations based on the finite element method (see Supporting Information). The 

strain is introduced by imposing an in-plane stretch and in-plane rotation to the suspended sheet at 

the clamping edges. In Figure 3d, we impose an in-plane stretch of 1.5 nm and in-plane rotation of    

-0.2 degrees about a pivot point at the top right of the resonator. This strain results in local buckling 

in the lower edge with a maximum out of plane displacement of 36 nm, consistent with 

measurement. Figures 3e and f show the predicted eigenmodes for the buckled sheet. Both the 
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resonance frequencies and shapes are in reasonable agreement with measurements. For comparison, 

simulations carried out without any stress result in conventional beam modes as shown in Figure 3g.  

This good agreement overall allows us to use the simulation to evaluate the stress in the resonator. 

Stress is described by a 3x3 tensor that varies over the volume of the resonator13: 
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where σi is the stress along axis i and τij is the shearing stress in plane ij. A suitable transformation 

of the direction of the coordinate axes through rotation allows the components of the shearing stress 

τij to vanish. The result is a diagonal matrix with 3 components: σ1, σ2 and σ3, where σ1 > σ2,σ3 and σ1 

is known as the principal stress. Note that this transformation is made for each point of the resonator. 

The maximum value of the principle stress before a material breaks is used as the failure criteria for 

crystalline materials13.  

 

 

Figure 4 Calculated principal stress σ1 for the suspended graphene sheet in Figure 3. The colour 

scale shows the stress in the resonator, ranging from 0 to 1.5 GPa. a, Top surface. b, Bottom surface. 

Arrows indicate regions with low stress where the amplitude of the eigenmodes is maximum.  

 

Figure 4 shows the spatial distribution of σ1 over the top and the bottom surfaces of the suspended 

sheet from Figure 3. In between these two boundary surfaces σ1 varies continuously (not shown). 

The maximum stress in the suspended sheet is very high, about 1.5 GPa. For comparison, it has been 

shown that 1020 Steel breaks at 690 MPa13, MWNTs between 11 and 63 GPa14, and SWNTs 

8

 



between 13 and 52 GPa15. We attribute this high stress to be the consequence of the macroscopic 

uncontrolled forces that are applied during the mechanical exfoliation process step. Part of the 

resulting stress remains after the applied forces are released due to the large van der Waals 

interaction that holds the graphene to the SiO2 surface.  

Comparing Figures 3 and 4, it appears that the distribution of stress and the resonance properties 

are closely related.  The vibration amplitude is larger in regions of lower stress. In addition, there is 

a correlation between the resonance modes and regions of increasing stress: the fundamental 

eigenmode resonates at the lower free edge where the stress is the lowest, and the second eigenmode 

resonates at the upper edge where the stress is larger. The underlying physical mechanism is the 

same as for a beam under uniform tension for which the resonance frequency increases as the 

tension is raised16. 

To conclude, we have imaged the eigenmode shape of graphene resonators. For some resonators, 

we have found a new class of nanoscale eigenmodes where the vibrations are maximum in amplitude 

not at the center of the beam, but at the free edges. Simulations based on the finite element method 

indicate that these eigenmodes are the result of the high non-uniform stress present in the resonator. 

The shape of these exotic eigenmodes and the corresponding stress must be taken into account in 

future experiments and applications, such as for the determination of the Young’s modulus17,18 and 

the accurate calibration of mass, force, or charge sensing3,19,20. It could also be possible to 

manipulate the eigenmode shape by varying the strain during measurements via electrostatic tuning3, 

varying the pressure difference across sealed membranes, or displacing the clamping edges. This 

would allow one to activate mechanical vibrations in localized areas for multiple-target sensing 

applications. It is also important to realize that stress can be present in graphene sheets regardless of 

whether they are suspended or not.  This stress needs to be taken into account when engineering the 

band gap of graphene ribbons21,22,23, in measuring the amplitude and wavelength of ripples24,25, or in 

estimating the effective magnetic field in quantum electron interference experiments26,27. 
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A - Sample fabrication 

Suspended graphene sheets are fabricated by mechanical exfoliation. A freshly cleaved piece of Kish 

graphite (Toshiba Ceramics) is rubbed onto a degenerately doped silicon wafer with 290 nm SiO2 grown by 

plasma enhanced chemical vapor deposition. Before depositing the graphene, the wafer is patterned with 

trenches using photolithography and plasma etching. The trenches are millimeter long, 0.5 – 10 µm wide, and 

250 nm deep. Electrodes defined by photolithography between the trenches are deposited using electron-beam 

evaporation and consist of 5 nm Cr and 35 nm Au.   

 

B- Description of the FEM model 

To model the shape of the eigenmodes, we have developed a simulation based on finite element methods 

(FEM) using ANSYS. The first step of the simulation is to account for the buckling of the suspended sheet by 

finding the adequate boundary conditions at the clamping edges. To do this, we hold one clamping edge of the 

suspended region fixed, and impose an in plane displacement to the other clamping edge. Specifically, the 

displacement of this edge consists of a translation and a rotation within the undeformed resonator surface.  

Since the resulting out of plane displacement can be large, calculations are carried out taking into account 

geometric non-linear deformations1. To ensure that the buckling goes in the desired direction, we apply an out 

of plane perturbative force, which is then cleared at the end of the calculations. We make the assumption that 

the mechanical properties of the resonator are isotropic with 1TPa for the Young’s modulus and 0.17 for the 

Poisson ratio2. The exact value of the Poisson ratio has little effect on the output of the calculations. In the 

second step of the simulation, a modal analysis is performed to determine the resonance frequency and the 

eigenmode shape of the deformed resonator. Here, the modal analysis is carried out in the linear regime 

because the amplitude of the vibration is small. To check that this simulation is free of errors, it has been 

successfully compared to analytical predictions for a beam under tension3. The simulation also reproduces 

recent calculations on nanotubes with slack4. See sections C and D. 

 
 
 



 
C- Comparison between the FEM model and analytical expressions for resonators under tension.  

The resonance frequency for a beam under weak uniform tension (T <<EI/l2 ) is5
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T
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We take the length l = 500 nm, the width w = 20 nm, the thickness t = 3.5 Å, the density ρ = 2200 kg/m3, and 

the Young’s Modulus E = 1TPa. The bending moment of a rigid beam is I = wt3/12. 

For high tension (T>>EI/l2) the frequency can be expressed as3
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Figure S1 shows the resonance frequency as a function of tension using the FEM model and the above 

expressions. There is a good agreement between the theory and the FEM model. 
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Figure S1 Resonance frequency as a function of tension for the first eigenmode of a graphene resonator under 

tension. 

 

D- Comparison between the FEM model and previous simulations on buckled SWNTs.  

Previous work4 has reported numerical studies on SWNT resonators that are buckled (slack). We compare this 

work to the FEM model that we have developed. For this, we use the same geometry and the same physical 



characteristics as in reference 4. The resonator is a doubly clamped rod with l=1.75um, d=2nm, E=2.18TPa, 

ρ=2992kg/m3 and a slack of 0,3%. The slack is defined as the ratio of the excess length of the tube to the 

distance between the clamping points. Figure S2 shows the resonance frequency for different eigenmodes 

obtained with the two simulation techniques. A good agreement is obtained. 
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Figure S2 Resonance frequency for different eigenmodes of a SWNT resonator with 0.3% of slack.  

 

Conclusions of sections C and D. The FEM model shows a good agreement with established analytical 

expressions for beam resonators under tension and previous numerical calculations on buckled SWNTs. Note 

that the FEM model that we have developed can go beyond these cases. The model can be applied to 

resonators with any arbitrary geometry and any arbitrary stressed state.  

 

E- SFM detection of mechanical vibrations.  

We have developed a technique based on scanning force microscopy (SFM) to detect the mechanical 

vibrations of nanotube and graphene resonators6. The resonator motion is electrostatically actuated with an 

oscillating voltage applied on a gate electrode. The frequency fRF of the driving voltage VRF is set at (or close 

to) the resonance frequency of the resonator. In addition, VRF is modulated at fmod, 

)2cos())2cos(1( mod tftf RFππ− . While the SFM cantilever cannot follow the rapid oscillations at fRF, it can 

detect the modulation envelope.  



The topography imaging is obtained in tapping mode using the second eigenmode of the SFM cantilever. The 

vibrations are detected with the first eigenmode of the SFM cantilever. Figure S3 shows that the signal of the 

vibrations is significantly enhanced when fmod is matching the resonance frequency ftip of the first eigenmode 

of the SFM cantilever. As a result, measurements are carried out with fmod = ftip.  
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Figure S3 Detected response of the vibration of a nanotube driven at resonance as a function of fmod. The 

frequency of the first eigenmode of the SFM cantilever is 58 kHz. Nanotube resonance frequency fRF is 153 

MHz. Measurements are taken at the nanotube position where the vibration amplitude is maximum.  

 

Graphene resonators show a lorentzian response to the rf drive frequency. Figure S4 a shows the frequency 

response of a graphene resonator measured with the SFM technique. For comparison, Fig. S4 b shows the 

frequency response of the same resonator measured using optical interferometry7. The resonance frequencies 

are very similar for both techniques. However, the quality factor measured with the SFM technique is much 

lower due to energy dissipation to air, as the SFM technique is operated at atmospheric conditions, while the 

optical interferometry is performed in vacuum. Note that the low Q is not attributed to the disturbance of the 

SFM tip6. Indeed, we have noticed no change in the quality factor as the amplitude set point of the SFM 

cantilever is reduced by 3%–5% from the limit of cantilever retraction, which corresponds to the enhancement 

of the resonator-tip interaction.  
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Figure S4 a Resonance peak of the fundamental mode of the graphene resonator shown in Figure 2 of the 

paper. The measurement is carried out using the SFM technique in air. The resonance is found at ~31 MHz 

with the quality factor Q = 5. Measurements are taken at the position where the vibration amplitude is 

maximum. b Resonance peak measured optically with a pressure of < 10-6 torr. The resonance is found at 32 

MHz with Q = 64.  

 

As shown in Eq. 1 of the paper, the radio frequency force FRF on the suspended sheet is a linear function of 

the offset voltage VDC and the radio frequency voltage VRF.  Figure S5 shows vibration amplitude as a function 

of VDC for an edge eigenmode of a graphene resonator. We find that the vibration amplitude is a linear 

function of the DC voltage and thus of the force.  By operating in this regime, we ensure that the resonators 

are operating in the linear response regime, and the exotic edge eigenmodes are not a result of non-linear 

effects.   
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Figure S5 Vibration amplitude as a function of VDC at f1 = 33 MHz and VRF = 100 mV for an edge eigenmode 

of a graphene resonator. The dimensions of the suspended sheet are t = 6 nm and l = 3.5 μm. The 

measurements are obtained at the position of the graphene sheet where the amplitude is maximum 

 

F- Estimation of the vibration amplitude of graphene resonators.  

The amplitude of the vibration can be estimated when considering beams that neither have slack nor tension. 

The eigenfunctions Un(x) are obtained from6,8: 
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The displacement of the resonator can be expanded in terms of Un(x), 
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with fn the eigenfrequencies, Qn the quality factor for each eigenmode and 

RFDCRF VVzxCF )()(/)( φ−∂∂= . C(x) is the capacitance per unit of length and is given by z
wxC 0)( ε=   

with w the width of the resonator and z the separation between the resonator and the gate. We have estimated 



that the maximum amplitude of the graphene resonator in Figure 2 of the paper is 0.1 nm. For this, we have 

used Q = 5, VDC - φ= 3V, and VRF  = 60 mV. 
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