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Abstract 

 We investigate correlation effects in the regime of a few electrons in uncapped InAs quantum 

dots by tunneling spectroscopy and wave function (WF) mapping at high tunneling currents where 

electron-electron interactions become relevant. Four clearly resolved states are found, whose 

approximate symmetries are roughly s and p, in order of increasing energy. Because the major axes of 

the p-like states coincide, the WF sequence is inconsistent with the imaging of independent-electron 

orbitals. The results are explained in terms of many-body tunneling theory, by comparing measured 

maps with those calculated by taking correlation effects into account.  

Keywords:  scanning tunneling microscopy, wave function mapping, quantum dots, correlation effects, 
many-body tunneling theory 
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Quantum dots (QDs) have attracted great attention in the last years as ideal materials where 

three-dimensional (3D) electronic confinement leads to novel phenomena and applications1, from 

optoelectronics to implementation of quantum computation. In particular, strain-induced InAs QDs have 

been largely investigated and used in optoelectronics due to the possibility of achieving emission at 

wavelengths of interest for telecommunications2-5. The wave functions (WFs) of electrons and holes 

confined in the QDs are the most basic features ultimately determining all QD properties. Some of us 

previously demonstrated that it is possible to map the dot WFs in the one-electron regime by means of 

spatially resolved tunneling spectroscopy images6. The presence of more electrons in a QD leads to a 

Coulomb interaction between carriers. As a consequence the injection of an additional electron into the 

QD affects its energy spectrum and ultimately changes the WFs, leading to novel ground and excited 

states. Understanding this basic but fundamental issue would be a key step forward for the 

comprehension of few-particle interactions in strongly correlated systems as well as for applications in 

the fields of single-electron devices, spintronics, and quantum information encoding. Indeed, QDs with 

a few electrons can be strongly interacting objects and large correlation effects have been recently 

reported in light scattering7 as well as in high source-drain voltage spectroscopies8.  

 Despite theoretical predictions that WF mapping of QDs should be sensitive to correlation 

effects9, 10, there has been no clear experimental evidence yet. In fact, all WF images obtained so far, in 

both real6, 11, 12 and reciprocal space13-16, have been basically interpreted in terms of independent-

electron orbitals. Here we investigate correlation effects by WF mapping. Specifically, we study 

uncapped InAs QDs by tunneling spectroscopy at high tunneling currents where electron-electron 

interaction and correlation effects become relevant. We find four clearly resolved states: their maps 

loosely display s-like and p-like symmetries, in order of increasing voltage. Surprisingly, the p-like 

states elongate in the same direction. As a consequence, it is not possible to explain the WF sequence in 

terms of either one-electron orbitals (then two orthogonal p-like states should be observed) or self-

consistent orbitals (a replica of the s-like instead of the p-like state would be expected, in the case of 

charging of a second electron). We show that correlation effects play a crucial role in this case and we 
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use many-body tunneling theory combined with full configuration interaction (FCI) calculations17 to 

explain the experimental observations. 

 The strain-induced InAs QDs were grown on n-doped GaAs(001) substrates by molecular beam 

epitaxy (MBE). First, an n-doped GaAs buffer layer ( cm18
D 102×≈N -3) 200 nm thick was deposited at 

a temperature of 620 °C. Then, an undoped tunneling barrier 5 nm thick ( cm15
A 10<N -3) was 

overgrown (see Figure 1a) in order to provide the decoupling necessary to investigate the inherent 

electronic properties of the QDs and to obtain direct images of the dot WFs disentangled from the 

electronic structure of the substrate. Finally, the sample was cooled down to 500 °C in order to form the 

QDs by depositing 2.1 ML of InAs at a growth rate of 0.05 ML/s. Reflection high-energy electron 

diffraction (RHEED) was used to monitor in situ QD formation. A transition from a streaky to a spotty 

pattern (indicating the onset of three-dimensional islanding) and chevron-like spots generally attributed 

to QD facets were observed18. The base pressures of the MBE and scanning tunneling microscopy 

(STM) chambers were below 10-10 mbar and the samples were transferred into the STM (within 1 h) 

without being exposed to air by means of a mobile ultrahigh vacuum transfer system at  mbar in 

order to avoid contamination. 

910−<p

 To spatially map the energy-resolved local electron density, we have used scanning tunneling 

spectroscopy (STS). According to the standard mean-field theory19, the differential tunneling 

conductivity  is to a good approximation proportional to the local density of 

independent-electron states (LDOS), and in the case of a system described by discrete states 

),,(/ yxVdVdI

),,( yxEiiψ  

the LDOS is given by 2),,(∑ E ii yxE
δ

ψ . As a consequence, if the energy resolution Eδ  is less than the 

energy level spacing, the LDOS reduces to a single term and spatially-resolved  maps display 

the detailed spatial structure of 

dVdI /

2),,( yxEiiψ  at the corresponding energy eV . If correlation effects are 

strong, however, the concept of LDOS is not appropriate and  is instead expected to be 

proportional to 

),,(/ yxVdVdI

);,;,(Im/1 eVyxyxGπh− , where G is the interacting retarded Green's function (or 

single-electron propagator) resolved in both energy and space9, 10, 20. The imaginary part of πh/G−   
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(known as spectral density) may be regarded as the modulus squared of a quasi particle WF ),,( yxEiiϕ , 

which can considerably deviate from its independent-particle counterpart ),,( yxEiiψ  (refs 9 and 10). 

 Our STM operates at <<p 10-10 mbar and =T 6 K with a maximum energy resolution of =Eδ  2 

meV (ref 21). STM images were taken in constant-current mode using W and PtIr tips with a typical 

sample bias in the range of 2-4 V and a tunneling current of 20-40 pA. A lock-in technique (modulation 

voltage Vmod in the range of 5-20 mV) was used to record  and WF mapping was carried 

out over a specified area by stabilizing the tip-surface distance in each point  at voltage V

),,(/ yxVdVdI

),( yx stab and 

current Istab, switching off the feedback and recording a  curve from VdVdI / start to Vend (Vstart ≤ Vstab) 

(ref 6). As a result, WF mapping produces a three-dimensional array of  data, which allows (i) 

obtaining spatially resolved  images at different values of V

dVdI /

dVdI / sample and (ii) extracting the  

spectra at specific positions corresponding to specific topographic features. 

dVdI /

The sample structure and experimental setup are sketched in Figure 1a. Large-scale constant-

current STM images (not shown) revealed a QD density of cm10105.2 × -2, while the shape of the QDs 

was determined from STM images acquired within a smaller area, as in Figure 1a. Despite some 

variation in size (with a typical lateral extension of 30 nm along both [  and 110] [110]  directions and 

an average height of 5-6 nm), all QDs exhibit similar facets. As shown in Figure 1a, the QDs have a 

pyramidal shape with well-defined facets and a fairly sharp summit. We observed a pronounced shape 

anisotropy as visible from the three-dimensional (3D) view of Figure 1a as well as from the height 

profiles reported in Figure 1b. In particular, the height profile is triangular along [ , and rounded 

along the perpendicular direction 

110]

[110] . The inclination angle between the facets and the substrate is 

approximately 19°, in line with (114) planes. Similar structural features and anisotropic shapes were 

reported in recent studies, in particular by Marquez et al.18. Besides the bright QDs, several steps are 

visible on the wetting layer (WL), which has a 42×  reconstructed structure similar to that of the 

GaAs(001) surface6. 
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To examine the electronic structure in our QDs, scanning tunneling spectroscopy was performed 

on individual dots. Figure 2 (top part) shows typical  spectra taken on a relatively small 

QD in different positions. Four clearly resolved peaks corresponding to resonances in the QD’s spectral 

density were observed in the STS spectra, indicating that the effective energy resolution 

( / ) /( / )dI dV I V

Eδ  is smaller 

than the level spacing. In particular, we identify sharp peaks marked A at 840 mV, B at 1040 mV, C at 

1140 mV, and a broader peak D at 1370 mV, whose full widths at half maximum (FWHM) are about 

30, 25, 40, and 75 mV, respectively. Moving from the QD center to its sides, the intensity of the low-

energy peak decreases while the others increase in weight. Moreover, we observe a small blue shift of 

the whole spectrum to higher energies, probably due to the increased band bending at a smaller distance 

between the tip and the degenerately doped GaAs backgate when the tip is at the rim of the QD6. 

However, since the resulting peak shifts are small,  images still largely represent the peak 

intensity as a function of position

dVdI /

6. For comparison, the STS curves on the wetting layer (outside the 

QD, cyan curve of Figure 2) are featureless in the same voltage range. Thus, we ascribe the 

 peaks to quantized states of the QD. ( / ) /( / )dI dV I V

The spatially resolved mapping allows us to determine the symmetry of the corresponding 

squared WFs by revealing their shape. The bottom part of Figure 2 shows the 3D spatial variation of the 

 signal at tunneling voltages where peaks in the QD’s spectral density are exhibited. In 

detail, we observe the following approximate symmetries: one s-like (A), two (or possibly three) p-like 

(B, C, and D), on going from low to high energy. As expected for the moduli squared of the two lowest-

energy one-electron s- and p-like orbitals, states A and B exhibit a roughly circular symmetric intensity 

distribution and elongation along the 

( / ) /( / )dI dV I V

[110]  direction with a node in the center, respectively. 

Unexpectedly, state C shows again a p-like symmetry in the [110]  direction, as before, instead of 

 as expected for the second p-like orbital[110] 6. As a consequence, it is not possible to explain the WF 

sequence (and map C in particular) in terms of states of the systems with just one electron, since in this 

case we would expect the appearance of either a single p-state or two p-states elongated in the [110]  
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and [  directions, respectively. On the other hand, we also exclude the charging of the same p-like 

orbital with a second electron having opposite spin, since in this case we would expect to observe also 

the charging of the s-like orbital, resulting in a second state with circular symmetry. For similar reasons, 

C is not a phonon replica

110]

22. As a consequence, we believe that correlation effects play a key role and the 

quasi particle WF concept is needed to understand these features. We do not observe any p-state 

elongated along [  in the voltage range explored since it lies at high energy due to the strong 

anisotropy of our QDs (see Figure 1), according to previous theoretical predictions

110]

23. 

For further discussion of the state sequence, we start by noting that states B, C, and D are 

oriented in the same direction ([110] ), as we also observed in our previous report6. This indicates that 

the effective potential confining the electrons has a C2v symmetry, i.e., is approximately an elliptic 

harmonic trap in the  plane where the elliptical anisotropy models both geometrical deviations 

from perfect circularity and atomistic effects due to strain, piezoelectric fields, and interface matching. 

FCI calculations

),( yx

17 taking into account this QD anisotropy, the effect of dielectric environment, and 

electron correlation were thus performed to address the effect of electron-electron interaction on quasi 

particle WF mapping. In more detail, we considered the fully interacting Hamiltonian for different 

electron numbers, N, and we solved the corresponding few-body problems numerically in an accurate 

way, by means of the FCI method17, that we previously have successfully applied in predicting QD 

transport24 and Raman spectra7. Eventually, from the FCI output for N and N – 1 electrons, consisting in 

correlated ground and excited states expanded into a superposition of different electronic configurations 

(Slater determinants), we compute the quasi particle WF maps9, 10 to be compared with states of Figure 

2 (ref 25). The more correlated the dot, the stronger the configuration mixing, which modifies the 

spatial shape of the quasi particle WF due to interference among different orbitals. In this respect, it is 

worth noting that the effect of dielectric mismatch between InAs and vacuum is believed to be strong22, 

26, 27. Qualitatively, its inclusion into our model implies that26, 27 (i) the single-particle confinement 

potential is changed (self-polarization effect) and (ii) the electron-electron interaction is strengthened 
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(interaction with surface image charges of like sign). While issue (i) does not change qualitatively the 

model, feature (ii) enforces correlation effects, which are relevant in the present context22. In order to 

qualitatively mimic this effect in the calculation, we thus introduced an ad hoc strengthening factor 

multiplying the Coulomb interaction term of the Hamiltonian. Specifically, the equivalent relative 

dielectric constant κ  used corresponds to 4=κ . While a rigorous treatment of effects (i) and (ii) is 

possible (see ref 20), it is beyond the aim of the present work22. 

In Figure 3a the calculated STS map for the ground state → ground state tunneling transition 

 (being N the number of electrons in the QD before and after the tunneling transition) is 

shown in the correlated case for increasing values of the dot anisotropy (from left to right). For a 

perfectly circular QD (left plot) we unambiguously predict an isotropic s symmetry for the WF (in the 

non-interacting case the STS map is only slightly squeezed with respect to the correlated image on the 

left-hand side of Figure 3a). On the other hand, by increasing the QD eccentricity, we see that 

progressively the interacting WF forms two peaks along the major axis, while its noninteracting 

counterpart is simply a Gaussian being elongated along the same direction (not shown). We thus 

identify the state C in WF mapping with this tunneling transition 

21 =→= NN

21 =→= NN  from ground to ground 

state. The formation of the two peaks, together with the loss of weight at the dot center, is due to the 

destructive interference between s and d states of the harmonic oscillator along the major axis 

(belonging to the same representation  of the C1A 2v group), which is a correlation effect. Such an effect 

is ultimately connected with the loss of angular correlation induced by the breaking of circular 

symmetry, which is compensated by radial correlation along the major axis. This can also be seen as a 

manifestation of the general statement that the importance of correlation increases as the system 

dimensionality is reduced (in this case, from 2D to 1D). 

In Figure 3b, we present (from left to right) the experimental STS energy spectrum (first 

column) and typical predicted maps calculated separately for the charging processes corresponding to 

the injection of the first (second column) and second (third column) electron into the QD. Different FCI 

calculations for different sets of input parameters were performed, showing the same qualitative trend as 
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displayed in Figure 3. Note that the tip-induced band bending has to be taken into account to transform 

the voltage scale into the energy scale. Specifically, the comparison of experimental energy spacings 

(left diagram) with those calculated (center and right) suggests that states A and B can be ascribed to the 

two lowest-energy states predicted for the tunneling process 10 =→= NN , while states C and D could 

be associated to the tunneling process 21 =→= NN . Moreover, the tunneling regime appears to 

switch from  to 10 =→= NN 21 =→= NN  at larger voltages/energies due to the increased current 

flowing in the tunneling junction. 

Thus, in this case the quasi-particle WFs probed by  mapping considerably deviate from 

the noninteracting WFs. As far as the energy scale is concerned, theoretical results are consistent with 

experimental ones if a voltage/energy conversion factor around 2.6 is assumed, while a factor around 2 

is obtained from a lever-arm-rule estimation considering that the applied voltage drop is shared between 

a 5-6 nm high QD and a 5 nm tunnel barrier while the tip-sample distance is typically around 1 nm. 

However, a strict quantitative comparison between measured and predicted quantities is presently out of 

reach because sample details, such as the exact confinement potential, and the degree of anisotropy are 

unknown. Since the peak FWHM in the WF mapping is around 50 mV, the energy resolution is not 

sufficient to distinguish the calculated ground- →  (ground-) excited-state transitions (right column of 

Figure 3b)  

dVdI /

α  from β  (experimental state C) and γ  from δ  (D) (ref 22). A comparison of the 

experimental line profiles (Figure 3c left, showing the maps of states B, C, and D along a QD volume 

slice) and theoretical ones (Figure 3c right, for state px, and overlaps of α and β, γ and δ, respectively) 

 reinforces this conclusion. Nevertheless, the excellent agreement between the measured and predicted 

solid blue curves of Figure 3c demonstrates that the spatial modulation of map C is a genuine effect of 

Coulomb interaction: In fact, the overlap (dashed blue line) of the noninteracting counterparts of states 

α and β -the s and px orbitals, mixed together with the same 1:1 ratio as α and β- poorly compares to C.     

 Our interpretation is further supported by a study of the dependence of the STS spectra on the 

stabilization current. Since the tunneling rate through the undoped GaAs tunnel barrier is much larger 

than the typical tunneling rate from the tip to the QD6, in order to systematically investigate charging 
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effects we recorded tunneling spectra at different stabilization currents Istab (i.e., we varied the tip-dot 

distance) to gradually increase the tunneling rate into the QD in order to populate it28. In Figure 4, we 

focus on states B and C, which are visible at voltages between 1040 and 1140 mV, dominating the 

spectra acquired on the QD sides. In the  spectra collected at increasing IdVdI / stab, the first (second) 

peak corresponding to the first (second) p-like orbital gradually disappears (appears). This suggests that 

at low (high) values of the stabilization current we probe the energy spectrum of an uncharged (charged) 

quantum dot, while for intermediate values we can see both peaks (as in our WF maps). Thus, the state 

C must be associated with the tunneling process 21 =→= NN  since it appears at higher Istab (the STS 

levels measured at increasing values of the current correspond to higher values of QD occupancy). On 

the other hand, a discussion of state D is more complicated. It could be tentatively ascribed to the 

tunneling process  (states 21 =→= NN γ  and δ  in Figure 3b) according to theoretical results. 

However, from Figure 2 peak D appears to be located at an energy where the wetting layer significantly 

contributes to the spectral density (which is high also outside the QD). So, a coupling is possible and 

this could explain the increased FWHM observed for state D (Figure 2). 

 In conclusion, we have investigated the role of electron-electron interaction in few-particle QDs 

by WF mapping. Correlation effects were found to be relevant for tunneling spectroscopy at high 

tunneling currents, and a many-body picture was developed to explain these features on the basis of 

theoretical calculations. These results demonstrate the sensitivity of STS to electron correlation. They 

could inspire experiments for a broad range of nano-objects including carbon nanotubes and single 

molecules.  
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a b 

Figure 1  Experimental setup and dot morphology. (a) Experimental setup and three-dimensional 

STM image of a representative uncapped QD grown on n-doped GaAs(001) substrate. (b) Height 

profiles of the same QD along two perpendicular axes, parallel to [  and 110] [110]  directions, 

respectively.  
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Figure 2  STS spectra and wave function maps.  Top panel: ( /  spectra vs V measured 

at different positions on a single QD, moving from the QD center to its sides. Bottom panel: STS spatial 

maps of a single representative dot, taken at 840, 1040, 1140, and 1370 mV, for resonances A, B, C, and 

D, respectively (second-fifth panel). The color code represents the STS signal with respect to the 

topographic STM image on the left-hand side (first panel), increasing from blue to red. The dot height 

in the first panel varies from 0 (dark brown) to 

) /( / )dI dV I V

6≈  nm (light brown). The lateral extension of all maps 

is  nm. I3030× stab = 100 pA, Vstab = 1.5 V, Vmod = 4 mV. 
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Figure 3  Comparison between measured and predicted wave function maps. (a) Calculated STS 

maps (WF square moduli) for the ground state →  ground state tunneling transition 21 =→= NN , as a 

function of dot anisotropy (the central image is labeled C in panel b). From left to right, the ratios of the 

lateral extension of the major to minor axes are 1, 2.5, and 5, respectively. (b) Experimental STS energy 

spectrum (left column) and calculated states for the tunneling processes 10 =→= NN  (center column) 

and  (right column). The predicted images of experimentally relevant states are also 

shown. The in-plane size of all 3D plots is 

21 =→= NN

24×  units of the lateral extension of the noninteracting s 

orbital in the elongated direction. (c) Profiles of STS maps (left) and predicted probability densities 

(right, in arbitrary units) along a QD volume slice. The measured profiles were extracted from the data 

of Figure 2 after averaging in the transverse direction (see Figure 2 in Supporting Information). The 

predicted solid blue (green) curve corresponds to the overlaps of α and β (γ and δ) states, mixed with a 

1:1 ratio. The dashed blue line is the 1:1 overlap of s and px noninteracting orbitals.  
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Figure 4  Changing the dot occupancy by varying the stabilization current.  

tunneling spectra vs V as a function of the stabilization current I

)//()/( VIdVdI

stab measured at the QD side, where 

states B and C are dominant.  
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Supplementary Discussion and Figures  

 
1. Change of local density along the QD  

 

For further comparison of experimental and theoretical data, we provide in Supplementary Figure 1 the 

separate linear profiles of calculated states α, β, γ, and δ. The 1:1 mixing of pairs α and β, γ and δ, 

respectively, is shown on the right hand side of Fig. 3c. The experimental linear profiles appearing on 

the left hand side of Fig. 3c were obtained by averaging the differential conductance in the transverse 

direction in the spatial regions shown in Supplementary Figure 2.      

 

 

 
Supplementary Figure 1. Separate profiles extracted from α and β (top) and γ and δ (bottom) 
predicted maps of Fig. 3b. 
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Supplementary Figure 2. STS spatial maps (same set of data as the maps of Fig. 2) of a single 
representative dot recorded at the voltages 1040 (B), 1140 (C), and 1370 (D) mV, respectively. The size 
of all maps is 30 × 30 nm. Istab = 100 pA, Vstab = 1500 mV, Vmod = 4 mV. White (black) colour stands for 
high (low) values of (dI/dV)/(I/V). The colored rectangles show the spatial regions where the profiles in 
Fig. 3c were averaged. 
 

 

2. Interpretation of state C 

 

We associate states C and D to the tunneling process 21 =→= NN . In particular, since the peak 

FWHM in the WF mapping is around 50 mV, the energy resolution is not sufficient to distinguish the 

calculated ground- →  (ground-) excited-state transitions (right column of Fig. 3b)  α  from β  

(experimental state C) and γ  from δ  (D). By assuming a value 2.6 for the voltage/energy conversion 

factor, the B to C energy splitting is about 38 meV, quite close to that of optical phonons in the 

InAs/GaAs system. However, we exclude that state C is a phonon replica of B (involving the emission 

of an optical phonon of the QD or of the GaAs layer below) for the following three reasons.  

  

(i) The dependence of the STS spectra on the stabilization current suggests that state C must be 

associated to the tunneling process 21 =→= NN  since it only appears at higher Istab where state B 

then disappears (the STS levels measured at increasing values of the current correspond to higher 

values of QD occupancy). On the other hand, we would not expect state B to disappear if it were the 

main peak associated to elastic tunneling.   
    

(ii) A phonon replica would presumably appear as a small side peak due to a reduction of transition 

probability (it is a second order process), while B and C states exhibit comparable spectral densities 

(see Fig. 2).  
    

(iii) We did not observe any phonon replica of state s. 
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Moreover, the small energy splitting between B and C states along with the small blue shift of the whole 

spectra to higher energies on the QD sides accounts for the high intensity regions on the QD sides 

visible in the STS spatial map of state C (Figure 2b and Supplementary Figure 2), which belong to state 

B. 

 

3. Effect of the dielectric mismatch among quantum dot, vacuum, and STS tip 

 

As mentioned in the main text, the dielectric mismatch between QD and vacuum is responsible for the 

appearance of negative image charges on the dot surface, which increases the effective Coulomb 

repulsion among electrons in the QD. This effect is described in a simple way by the effective value 

4=κ  of the relative dielectric constant used in the FCI calculation: the smaller κ , the larger the 

Coulomb matrix elements, the stronger the electron correlation. A concern regards the presence of the 

STS tip, which in principle could screen the interaction and wipe off the effect. In this section we 

discuss the competing effects of the QD-vacuum and vacuum-electrode interfaces, and conclude that the 

Coulomb repulsion is significantly enhanced even in the presence of the STS tip.  

The estimate of the effective Coulomb repulsion relies on the calculation of the Green’s function as 

defined in classical electrostatics [see e.g. Jackson, J. D. Classical Electrodynamics, Chapters 2 and 3 

(Wiley, New York, 1975), and Refs. 26, 27]. Since only the simplest geometries allow for an almost 

analytical solution of the problem, here we consider a highly schematic model of the dielectric 

environment consisting in three parallel layers indefinitely extended in the lateral directions, namely 

two dielectrics (with relative dielectric constants 1κ  and 2κ , respectively) and a metal. Let z be the axis 

perpendicular to the perfectly flat interfaces, and locate the dielectric 1 / dielectric 2 interface at 0=z  

and the dielectric 2 / metal interface at Lz =  [the limit −∞→z  ( ∞+ ) corresponds to the bulk 

dielectric 1 (metal)]. The calculation proceeds through the lines indicated e.g. in Panofsky, W. K. H. & 

Phillips, M. Classical Electricity and Magnetism, Sec. 5.8 (Addison-Wesley, New York, 1962), based 

on the matching of the solutions of the Laplace equation in the three media by exploiting the lateral 

translational symmetry. Here we only state the final result for the effective Coulomb repulsion ),(eff zV ρ  

between two electrons, located at relative lateral distance ρ  and both placed at :  0<z
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where  is the zero-order Bessel function of the first kind. Note the two important cases: (i) With )(0 xJ

21 κκ = , , we have  and recover the bulk dielectric result . (ii) 

With  we recover the result for the two-dielectric problem, 

, given by the sum of the bulk pair 

interaction plus the repulsion with the image charge placed at vertical distance 

∞→L 0)( →kfz )/(),( 1
2

eff ρκρ ezV →

∞→L

])4)((/[)()/(),( 2/122
21121

2
1

2
eff zeezV ++−+→ ρκκκκκρκρ

z2 . The maximum 

value that  may reach is obtained in the latter case by putting effV ∞→21 /κκ  and , resulting in 

twice the bulk value (such an upper bound is specific to the planar plate geometry).  

0=z

To proceed further, we assume that electrons are laterally confined by a circular harmonic potential 

, where 2/)( 22
conf ρωρ mV = ωh  is the confinement energy and  is the effective electron mass. The 

(Fock-Darwin) ground state wave function of the single-particle problem, neglecting the motion along z, 

is the s-like Gaussian 

m

πρρϕ 2
QD

2
QD

2 /)2/exp()( ll−=s , where ωm/QD hl =  is the characteristic 

lateral extension of the orbital. In order to quantify the strength of electron correlation, we compute the 

Hubbard-like electrostatic repulsion U referred to the s-orbital: 
2

eff
2 )(),'()'(' ρϕρρρϕρρ ss zVddU rrrr

−= ∫∫ . 

After separation of the relative and center-of-mass coordinates, we eventually obtain an expression 

convenient to numerical evaluation:  

[ ] )2/exp()/(1 2

0
QD

QD1

2

xxfdxeU z −+= ∫
∞

l
lκ

. 

To apply the latter equation to the actual experimental geometry, we introduce effective thicknesses for 

the QD and vacuum regions, respectively. We proceed as follows: We model the QD as half an ellipsoid 

with basal semi-axes  nm, vertical semi-axis 15== ba 5=c  nm, and define the equivalent QD height 

 as the height of the cylinder of radius a and same volume as that of the ellipsoid: equivh 3/2equiv ch = . We 

then assume that electron motion is confined in the middle of the QD, 2/equivhz −= , and put 1=L  nm. 

The value of U obtained from the above parameters has to be compared with the reference case in which 

the STS tip is absent, i.e. . The relative reduction turns out to be 29% (27%) for GaAs (InAs). 

Nevertheless, U is still 5% (9%) larger than the value corresponding to a unique bulk, i.e. 

∞→L

21 κκ = , 

. This demonstrates that the enhancement of electron correlation due to the dielectric mismatch 

survives to the screening effect of the STS tip. Besides, correlation effects are expected to be much 

larger than those estimated within this simple model. In fact, while in the planar plate geometry the 

maximum value of U attainable is only twice the bulk value, in the case of a spherical dot in the vacuum 

U may be several times larger than the bulk value without any interface [Franceschetti, A., Williamson, 

∞→L
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A. & Zunger, A. Addition spectra of quantum dots: the role of dielectric mismatch. J. Phys. Chem. B 

104, 3398-3401 (2000)]. The representation of the actual experimental setup should fall somewhere in 

the middle between the limiting cases of the planar plate and spherical geometries, respectively. In 

addition, in our calculation the effective dot-tip distance is likely underestimated.   

In conclusion, on the basis of a rough estimate we believe the actual value of κ  employed in the FCI 

calculation is sensible. 
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