
Tensile Fracture of Welded Polymer Interfaces:

Miscibility, entanglements and crazing

Ting Ge,†,‡ Gary S. Grest,¶ and Mark O. Robbins∗,†

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA,

Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA, and

Sandia National Laboratories, Albuquerque, NM 87185 USA

E-mail: mr@jhu.edu

Abstract

Large-scale molecular simulations are performed to investigate tensile failure of polymer

interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and

interfacial fracture energy GI are correlated to changes in the interfacial entanglements as de-

termined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed

by craze breakdown through chain scission. At small t welded interfaces are not strong enough

to support craze formation and fail at small strains through chain pullout at the interface. Once

chains have formed an average of about one entanglement across the interface, a stable craze

is formed throughout the sample. The failure stress of the craze rises with welding time and

the mode of craze breakdown changes from chain pullout to chain scission as the interface

approaches bulk strength. The interfacial fracture energy GI is calculated by coupling the sim-

ulation results to a continuum fracture mechanics model. As in experiment, GI increases as
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t1/2 before saturating at the average bulk fracture energy Gb. As in previous simulations of

shear strength, saturation coincides with the recovery of the bulk entanglement density. Before

saturation, GI is proportional to the areal density of interfacial entanglements. Immiscibiltiy

limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of

immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and

GI << Gb.

1 Introduction

The strength of polymer-polymer interfaces has great importance in the application of polymers

as adhesives, coating materials and structural components.1–3 Ideally the interface should be as

strong as the surrounding bulk material so that it does not initiate failure. One common means

of strengthening polymer interfaces is thermal welding.1 The interface is heated above the glass

transition temperature so that polymers can diffuse across the interface. While polymers must

diffuse by a distance on the order of their radius of gyration for all memory of the interface to

be erased, experiments1,4,5 and simulations6,7 have shown that bulk strength is recovered at much

earlier times.

There has been great interest in understanding the evolution of interfacial strength with in-

terdiffusion time and its connection to interfacial structure.4–6,8–18 Experiments4,8,9 have found

a correlation between the mechanical strength and the interfacial width. For homopolymers, the

growth of interfacial width with time has been explained using reptation theory.10–16 For immis-

cible polymers, the free energy cost of mixing limits interdiffusion, causing both the interfacial

width and strength to saturate.17,19,20 Theories have interpreted the growth of strength with time

in terms of entanglements,10–17 but experiments can not directly image entanglements to test these

predictions.

In recent work we have used simulations to follow the evolution of the shear strength of in-

terfaces between miscible6 and immiscible polymers.18 The maximum shear stress before failure

σmax was evaluated using a geometry that mimics a lap-joint shear experiment.21–24 As in experi-
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ments,21 we found that σmax rose with welding time t as t1/4 and saturated long before polymers

had diffused by their radius of gyration. In contrast to experiments, simulations allowed direct

observations of the evolution of topological constraints (TCs) associated with entanglements. The

shear strength rose linearly with the areal density of interfacial entanglements between polymers

that started on opposite sides of the interface. Homopolymers achieved bulk strength when they

had interdiffused enough to produce roughly two TCs per chain. This was sufficient to prevent

chain pullout at the interface and led to failure through chain scission, as in the bulk. Even a small

degree of immiscibility prevented interfacial entanglements, resulting in weak interfaces that failed

through chain pullout.

In many applications polymer interfaces are under tensile loading and the ultimate mechanical

strength of the whole system containing them is determined by their interfacial fracture energy

GI .1–3 The fracture energy is the amount of external work per unit area required to propagate

a crack across the interface.2 It represents an integral of the stress times displacement and rises

both with the peak tensile stress and the total deformation of the system. A lower bound for

GI is the free energy change 2γ , where γ is the interfacial free energy. Common methods of

measuring GI include the double cantilever beam experiment and T-peel test.1,4,8,9,17 Experiments

on homopolymer interfaces10 show that GI grows as t1/2, which is proportional to the interfacial

width, before saturating at the bulk fracture energy Gb.

The bulk fracture energy of glassy polymers is typically thousands of times larger than 2γ .

This increase is not due to a large increase in the peak tensile stress, but rather because a large

volume around the crack tip is deformed into a network of fibrils and voids called a craze.2,25–28

The density of craze is lower than that of the bulk glass by the extension ratio Λ. In most cases Λ

correlates to the entanglement molecular weight of the polymer and is insensitive to temperature,

strain rate and other conditions.2,25–28 Formation of the craze occurs by drawing fibrils out of the

bulk polymer at a constant plateau stress S. These oriented fibrils are then strong enough to resist

further deformation. Brown29 developed a fracture mechanics model for GI in terms of Λ, S and

the ultimate failure strength of fully developed crazes Smax. Rottler et al.30 later used molecular
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dynamics (MD) simulations to determine the inputs to Brown’s model. Their results capture many

aspects of craze formation, including the large fracture energies of bulk polymers.

In this paper we use simulations to study the tensile strength of the interfaces between miscible

and immiscible homopolymers whose shear strength was studied in Refs. 6 and 18. For miscible

polymers at small times, and for the immiscible interfaces studied here, the interface separates eas-

ily and chains are pulled back to their initial side of the interface with a small interfacial fracture

energy. The fracture energy begins to rise rapidly when the interface is strong enough to allow

formation of a stable craze over a large volume. This coincides with formation of the first TCs

of polymers with polymers on the opposing side and occurs long before there is a significant in-

crease in the peak shear or tensile stress. Brown’s theory is used to determine GI , which grows

as t1/2 for miscible polymers. Final saturation of strength occurs when interdiffusion has restored

the entanglement density near the interface to its bulk value. This saturation occurs at the same

time as the saturation of shear strength.6 While σmax only increases by a factor of 2 or 3 during

welding, GI increases by more than two orders of magnitude because of the large increase in craze

volume. As in studies of shear strength,18 interfaces between immiscible polymers are weaker be-

cause their finite equilibrium width suppresses entanglements. The equilibrium fracture energy is

comparable to that of homopolymers at welding times that produce the same density of interfacial

entanglements.

The following section describes the simulation geometry and method for determining fracture

energy. In Section 3, results are presented first for miscible polymers and then for the immiscible

case. The final section presents a summary and conclusions.

2 Simulation Model and Methodology

The potential models and welded states were the same as in Refs. 6, 7 and 18 where further de-

tails of their preparation can be found. All of the simulations employed the canonical bead-spring

model31 that captures the properties of linear homopolymers. The van der Waals interactions
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between spherical monomers of mass m are modeled using the standard Lennard-Jones (LJ) po-

tential with interaction energy u0, monomer diameter a and characteristic time τ = a
√

m/u0. The

potential was truncated and shifted to zero at monomer separation rc = 1.5a or 2.5a. To model

immiscible films, the interaction strength u0 between unlike monomers was reduced to ε̃12u0 < u0.

Four systems with ε̃12 = 1.0, 0.99, 0.98 and 0.95 were simulated.

Chains of length N = 500 beads were made by connecting nearest-neighbors using an addi-

tional bonding potential. Melt simulations were performed with the usual unbreakable finitely

extensible nonlinear elastic (FENE) bonding potential.31 A simple quartic potential with the same

equilibrium spacing was used in the mechanical tests since chain scission plays an essential role

in failure. As in past simulations,6,7,18,30,32 the breaking force for the quartic potential, 240u0/a,

is 100 times higher than that for the intermolecular LJ potential. This ratio is consistent with ex-

perimental estimates.7,33,34 Previous work has shown that the entanglement length for this model

is Ne = 85±7 and that the mechanical response for N = 500 is characteristic of highly entangled

(large N) polymers.7,30,35–38

There is no precise mapping of our coarse-grained model to any specific polymer, but approx-

imate mappings give u0/a3 ∼ 50MPa and u0/a2 ∼ 25mJ/m2 for the units of stress and fracture

energy, respectively.7 The interfacial energy of the polymer-vacuum interface is γ ∼ 1u0/a2 ∼

25mJ/m2 with a weak dependence on temperature.39,40 The fracture energy must exceed the free

energy associated with the two interfaces created, GI > 2γ .

Fluid films of each polymer species were equilibrated separately at temperature T = 1.0u0/kB

with rc = 2.5a. Each film contains M = 4800 chains or in total 2.4 million beads. Periodic bound-

ary conditions were applied along the x- and y-directions with dimensions Lx = 700a and Ly = 40a,

while featureless walls separated by Lz = 100a confined films in the non-periodic z- direction.

Equilibrated films were placed in contact and allowed to interdiffuse for a time t at T = 1.0u0/kB.

The system was then quenched rapidly to T = 0.2u0/kB, which is below the glass temperature

Tg ≈ 0.35u0/kB.41 Glass simulations are done with rc = 1.5a to reduce the difference between

melt and glass densities, and thus changes in chain conformation.42 This also facilitates compari-
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son with previous mechanical studies.30,35–38 The cutoff radius was reduced to rc = 1.5a prior to

quenching. The system was then quenched at constant volume with a rate Ṫ =−10−3u0/(kBτ) to

T = 0.5u0/kB where the pressure P = 0. Subsequently, the temperature was further quenched to

T = 0.2u0/kB at Ṫ =−2×10−4u0/(kBτ) and P = 0.

Entanglements in all quenched states were identified using the Primitive Path Analysis (PPA)

algorithm,43 which has provided unique information about the average spacing between entan-

glements both in a polymer melt at equilibrium43 and during the recovery of the entanglement

network from a non-equilibrium situation.44 During PPA, chain ends are frozen and tensile forces

are introduced to minimize the contour length without allowing chain crossing. To limit excluded

volume effects, we use a modification of the original PPA algorithm where the diameter of repul-

sive interactions between chains is then reduced by a factor of four and the contour is minimized

again.6,18,45 The resulting configuration is a network of primitive paths for each chain.

As in previous studies,6,18,45–47 we identified the interchain contacts between primitive paths as

topological constraints (TCs) associated with entanglements. The spacing between TCs is typically

2 to 3 times smaller46,47 than the entanglement length, which is defined as the Kuhn length of the

primitive path. The reason is that several contacts with primitive paths of other chains are needed to

randomize the direction. Recent studies of entangled polymer melts48 and craze formation49 also

show that unlike TCs, entanglements are not associated with specific pairs of chains. However, all

of the past work has found that the densities of TCs and entanglements are proportional to each

other. Refs. 6 and 18 describe the evolution of the ratio of the local density of TCs to the bulk

density. This is equivalent to the evolution of the entanglement density and we will refer to these

results below. We also present new measures of the evolution of TCs that are related to the onset

of interfacial craze formation.

To perform tensile tests that isolate the effect of the interface7 we apply strain to a region of

height L0
z = 50σ centered on the initial interface. Layers of width 5a above and below this re-

gion are held rigid and displaced at constant velocity v = 0.01aτ−1 in opposite directions along

the z−axis. Our simulation protocol is schematically illustrated in Figure 1. The deformation is
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Figure 1: Schematic of tensile test. Monomers in top and bottom layers of width 5a are displaced
in opposite directions at speed v. They impose a strain on a region centered on the initial interface
whose initial width is L0

z = 50a. Polymer beads are colored yellow and blue if their initial positions
before interdiffusion are at z > 0 and z < 0, respectively.

characterized by the stretch factor along the z−axis λ ≡ Lz/Lz
0, where Lz is the growing separation

between the top and bottom rigid layers. The periodic boundary conditions along x and y direc-

tions are not changed. The temperature is maintained at T = 0.2u0/kB by applying a Langevin

thermostat with damping rate Γ = 1τ−1 to the peculiar velocities in x and y directions.

Tests with different L0
z , Lx, Ly, v and Γ gave similar results. As discussed in Ref. 7, the rigid

walls screen the stress on regions separated by more than Lz along the x-y plane. Thus the data

for different regions along Lx = 700a are independent and the total stress from a single run is

effectively an ensemble average over roughly 14 regions. Previous simulations36,40 showed that

simulations of craze formation should be done at constant widening velocity rather than constant

true strain rate because deformation is localized to an active zone of fixed width at the edge of

the craze. Rottler and Robbins36 examined the velocity dependence of the plateau stress S during

craze formation and found a weak, logarithmic variation for v < 0.03aτ−1.

To obtain the average tensile response of bulk samples with chain length N = 500, we let one

polymer film evolve at constant temperature T = 1.0u0/kB and constant volume. We then selected

six states at times separated by equal intervals, ∆t = 50kτ , for mechanical testing. Simulation

protocols for quenching and tensile tests on these bulk samples were identical to those for polymer

interfaces.
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3 Results

3.1 Fully Miscible Interface

3.1.1 Evolution of Stress and Failure Mechanism

Figure 2(a) shows the tensile stress σz as a function of the stretch factor λ for interfaces between

fully miscible chains at the indicated interdiffusion times t. A million τ is abbreviated as 1Mτ and

the average result for bulk films is shown for comparison.

As shown in the inset of Fig.2(a), for 1 < λ < 1.1 the stress curves show a linear elastic region

followed by a peak and sharp drop, indicating the start of cavitation. The similarity between the

curves for different t confirms that cavitation is controlled by the local structure and stress state,2,36

which is nearly identical for all t and the bulk. A consequence is that cavitation and subsequent

craze nucleation can occur at places away from the interface. However, because of the thin film

geometry in our simulations, the results mainly reflect the effects of the interface on the fracture

process. In experiment, examining purely interfacial fracture is challenging. Special techniques

are usually required to confine the fracture process as near to the interface as possible.1,4,8

Changes in the mechanical response become evident after cavitation (λ > 1.1). For t < 0.1Mτ ,

σz drops to zero without a clear stress plateau, indicating that the system fails without forming

a stable craze. As shown in Fig. 2(b), for these states there are almost no broken bonds during

the whole process. Instead, the interface fails through chain pullout. Figures 3(a)-(f) illustrate the

evolution of systems at t = 0.01Mτ and 0.05Mτ upon stretching to λ = 3.4, 6.6 and 11.4. These

snapshots show that a few fibrils can form across the interface, but quickly fail through pullout. In

the final state (not shown) all monomers are on the side they started from before interdiffusion.

For t ≥ 0.1Mτ , there is a pronounced plateau in σz at the average bulk plateau stress S ∼

0.6u0/a3. This indicates that a stable craze has formed and grows steadily through the interfacial

region.27,28,36 Figure 3(g) illustrates the structure of the craze, an intricate network of fibrils and

voids. The density of the craze is lower than the initial density by the same extension ratio Λ ≈ 8

that is found for bulk samples.7,36,49 The stress plateau ends when all the material between the
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Figure 2: (a) Tensile stress σz and (b) fraction of broken bonds fbroken as a function of the stretch
factor λ for the interface between fully miscible polymers at the indicated interdiffusion times t,
and for the bulk. The inset of (a) shows the tensile stress σz at stretch factor 1 < λ < 2.
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Figure 3: Snapshots of the interface between fully miscible polymers during tensile tests at T =
0.2u0/kB for t = 0.01Mτ ((a)-(c)), 0.05Mτ ((d)-(f)) and 5Mτ ((g)-(i)). For each t, results are shown
for λ = 3.4, 6.6 and 11.4. Beads are colored based on their positions before the interdiffusion: z> 0
(yellow) and z < 0 (blue). For clarity, only a portion of the sample 40a deep in the x-direction (into
the page) is shown. Chains that appear to end are just leaving the front, back or sides of the pictured
region.
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two rigid layers, except regions within a distance on the order of the tube diameter from the rigid

layers, has been transformed into craze. Because of these uncrazed regions, the plateau ends at

a value of λ ∼ 6 that is smaller than Λ. Figure 2(b) shows that there is no bond breaking during

craze formation.

Upon further stretching of the fully developed craze, σz rises above S and reaches a maximum

stress Smax before the ultimate breakdown of the craze. For t = 0.1Mτ , Smax is close to S, but Smax

rises rapidly as t increases. The failure mechanism of craze fibrils also changes from chain pullout

to chain scission. For t = 0.1Mτ and 0.2Mτ , only a few bonds break. For t > 0.2Mτ , significant

bond breaking is observed. The peak rate of bond breaking and the final fraction of broken bonds

increase with t. In each case, the rate of bond breaking begins to drop near the point where σz

reaches Smax. Deformation of the craze in this range of times is illustrated by Figures 3(h) and (i)

for t = 5Mτ . Snapshot (h) shows the structure at λ = 6.6, where the entire system is stretched into

a uniform craze without significant bond breaking. Snapshot (i) shows the same interfacial craze at

λ = 11.4, where the ultimate breakdown has started. Note that chains from the two opposite sides

remain mixed rather than being pulled out to their initial sides, as for small t. Around t = 3Mτ , the

rate of bond breaking and the entire stress curve become statistically indistinguishable from the

bulk result.

3.1.2 Correlating Failure Mechanisms to Entanglements

In the previous section we identified several characteristic times where the mechanical response

changes. There is an onset of stable craze formation at tc ∼ 0.1Mτ , a transition from chain pullout

to chain scission at ts ∼ 0.5Mτ and a saturation at the bulk response for t ≥ tb ∼ 3Mτ . As in our

previous studies of shear strength,6,7 these transitions correlate with the evolution of entanglements

near the interface as measured by identifying TCs between the primitive paths of different chains.

Previous simulations36,40 showed that in mono-dispersed bulk samples stable crazes began to

form when the chain length was increased from 128 to 256. To sharpen this criterion, additional

simulations of bulk samples were performed for a set of chain lengths in the range 25≤ N ≤ 500.
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We found that homopolymers with chains of length N ≤ 175 did not form a stable craze, while

those with N ≥ 200 did.49 Since Ne ∼ 85, craze growth requires roughly two entanglements per

chain. At small welding times, chains have not diffused far enough to form these entanglements

and the interface responds like a bulk system with N < 175.

Results for the density of entanglements near the interface as a function of welding time are

presented in Ref. 6. They show that at tc the interfacial entanglement density is still strongly

suppressed from the bulk value for chains with N = 500. To identify a criterion for stable craze

formation we examined a new measure, the density of entangled interfacial strands. These are

defined as chain segments that cross the mid-plane z = 0 once and have one end forming a TC with

a chain from each side. Based on the bulk results described above, we expect that this is a minimal

criterion for the chain segment to contribute to stable craze formation.

Figure 4 shows the time dependence of the areal density of entangled interfacial strands, Σ. At

small times, Σ rises as chains diffuse across the interface. For t > 0.2Mτ , Σ saturates. There is no

further increase in the number of chains that cross the interface to form entanglements. The total

number of interfacial entanglements between chains from opposite sides continues to grow,6 but

only because chains that cross the interface diffuse farther and form more entanglements on the

opposing side. Note that Σ saturates near tc. Thus, once chains have formed the first TC across the

interface, chain pullout is suppressed and a craze is formed.

For t > tc the interface and bulk deform into a craze in the same way. Mechanical stability

requires that the tensile stresses are the same and we find the final densities correspond to the

same extension ratio Λ. For bulk crazes, both experiment25–28 and simulation36 results for Λ

are consistent with a model based on the idea that segments between entanglements become taut

during crazing. We verified that entangled interfacial strands stretched by the same amount as

their bulk counterparts. However, as in previous work,35,36,49 the strands are not completely taut.

This reflects a factor of
√

3 from an average over orientations that was dropped from the original

derivation of the expression for Λ.25,26,35

In mono-dispersed samples, previous simulations36 have shown that the mechanism of craze
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Figure 4: Development of the areal density Σ of interfacial entangled strands with interdiffusion
time t during thermal welding of fully miscible polymers.

failure changes with increasing chain length. For 2Ne < N < 3Ne, the craze forms and then fails

through chain pullout, while for N > 3Ne the craze fails through chain scission. This criterion

again highlights the role of entanglements in the breakdown of crazes. Our previous analysis6 has

shown that the density of entanglements keeps rising at the interface for t > tc. At t = 0.5Mτ , we

can already observe a considerable amount of bond breaking during craze failure (Fig. 2(b)). The

bulk mechanical response (and accordingly the level of bond breaking) is recovered when the bulk

entanglement density is recovered at the interface. This occurs by t = 3Mτ , which is the same

time where the bulk shear strength is recovered.6 Shear studies also found a rapid onset of bond

breaking between t = 0.2Mτ and 0.5Mτ .

The time for diffusion to completely erase the initial interface should be of order the disentan-

glement time τd ∼ 30Mτ for chains to diffuse by their end-end distance.7 Our finding that bulk

behavior is recovered for t << τd is consistent with several previous studies. Tensile tests by

Schnell et al.4 also showed that strength recovers at times much smaller than τd . More recently,
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McGraw et al.5 examined crazes formed at the interface between two identical polymer films as

a function of welding time.5 They found that the extension ratio of the interfacial craze reaches

that of the bulk craze at t << τd . In Ref. 6 we showed that 3Mτ corresponds to the time for the

density of entanglements near the interface to return to the bulk value. Chains have only diffused

far enough to create roughly two entanglements per chain with chains on the other side of the

interface, but this is enough to prevent chain pullout and achieve bulk strength.

3.1.3 Macroscopic Fracture Energy

The interfacial tensile strength is usually characterized by the interfacial fracture energy GI which

corresponds to the work needed to fracture a unit area.1,4,8,9,17 For systems that do not form a stable

craze (t < 0.2Mτ), deformation is localized to the interface. GI can then be obtained by integrating

the work under the stress curves in Figure 2: GI =
∫

σz L0
z dλ . This method is not sufficient for

t ≥ 0.2Mτ , because the rigid boundary layers limit the growth of the craze and therefore prevent

the simulation from capturing the whole plastic zone that would form ahead of an experimental

crack tip. To circumvent this limitation, we apply the same method as in a previous study,30 where

Brown’s fracture model and molecular simulation were combined to estimate the fracture energy

for polymer glasses.

Brown’s fracture model29 links two length scales: the macroscopic scale where the fracture

test is performed and the microscopic scale of fibrils and voids within the craze. In his model,

GI = Sd(1− 1/Λ), where d is the maximum width of the craze ahead of the crack tip. Brown

showed that d = 4πκ(Smax/S)2D0, where D0 is the spacing between fibrils and the dimensionless

κ can be expressed in terms of various elastic moduli of the fully developed craze. Since Smax

is not directly accessible to experiments, Brown estimated Smax from the stress needed for chain

scission, though the model applies for any mode of craze failure.

All quantities needed for the calculation of GI using Brown’s model can be measured in our

simulation. For t > 0.2Mτ the plateau stress and extension ratio are nearly constant, S = 0.6u0/a3

and Λ = 8. The ratio Smax/S is extracted from stress curves like those shown in Fig. 2. Previous
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Figure 5: Development of the interfacial fracture energy GI with welding time t. The dashed line
indicates the t1/2 power law. The inset plots GI against NI

TC/A, the areal density of interfacial TCs.
The dashed line indicates the linear correlation between GI and NI

TC/A before GI saturates at Gb.
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simulations30 using the same polymer model determined that κ = 2.0− 2.8 and D0 = 10− 14a.

Here, D0 ∼ 12a and κ ∼ 2.5 are used in our calculation of GI .

The increase of GI with t is shown in Figure 5. At long times, GI approaches the bulk fracture

energy Gb. Both are about 1000 times higher than the lower bound for Gb that is given by twice

the surface tension γ ∼ 0.6u0/a2. This ratio is consistent with experimental observations that

crazing increases the fracture energy by factors of several thousand.2 As in experiment,1,10 the

increase of GI with t follows a roughly t1/2 power law before saturating at the bulk fracture energy

Gb. A reptation50 argument has been employed to explain this power law based on formation of

entanglements across the interface. However, a recent simulation51 has shown that the dynamics

across the interface between entangled melts is dominated by chain ends, and cannot be simply

described as a reptation process. Differentiating between these pictures is difficult given the limited

scaling range in experiments.

Our simulation allows a direct test of the connection between GI and entanglements. The inset

of Fig. 5 shows a clear linear correlation between GI and NI
TC/A, the areal density of interfacial

TCs, before GI saturates at the bulk value. The proportionality between GI and NI
TC/A can be

related to the failure mechanism of chain scission, which is fostered by entanglements. Note that

this correlation is independent of the exact scaling of NI
TC/A or GI with t.

3.2 Immiscible Interface

For immiscible polymer interfaces, the free energy cost of mixing limits the degree of interdiffu-

sion. The interfacial width grows more slowly with time than for the miscible case and saturates

at a finite value at large times.18 The growth in fracture energy with t reflects these differences, as

shown in Fig. 6. Immiscible results are always below those for the miscible case. For ε̃12 = 0.99,

GI saturates at t ∼ 3Mτ . For more immiscible cases, GI shows almost no increase and saturates by

0.5Mτ .

The inset of Fig. 6 shows stress-strain curves for immiscible interfaces at their equilibrium state

and for the miscible case at 5Mτ . The trends with increasing ε̃12 are similar to those with increasing
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Figure 6: Development of GI with t at the fully miscible (ε̃12 = 1.0) and immiscible (ε̃12 < 1.0)
interfaces. The inset shows σz vs. λ for the fully miscible interface at 5Mτ and the immiscible
interfaces at equilibrium.
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Figure 7: Visualization of failure of equilibrated immiscible interfaces during tensile tests. Snap-
shots correspond respectively to ε̃12 = 0.95 at λ = 5 (a), ε̃12 = 0.98 at λ = 5 (b) and 11 (c), and
ε̃12 = 0.99 at λ = 5 (d), 11 (e) and 17 (f). Beads are colored based on their positions before the
interdiffusion: z > 0 (yellow) and z < 0 (blue). For clarity, only a portion of the sample 40a deep
in the x-direction (into the page) is shown. Chains that appear to end are just leaving the front,
back or sides of the pictured region.
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time for miscible interfaces in Fig. 2. The interface fails rapidly after cavitation for ε̃12 = 0.95 and

0.98. Figures 7(a-c) show that these systems fail through chain pullout to the original side with no

craze formation. For ε̃12 = 0.99 the stress has a value close to the bulk plateau stress for a range of

strains. Figures 7(d-f) show some fibrils, but there is no stable craze and failure is through chain

pullout.

In Ref. 18 we showed that a minimum interfacial width was needed for entanglements to form

across the interface. The equilibrium width for ε̃12 ≤ 0.98 is below this threshold, which is consis-

tent with the rapid failure shown in Fig. 6. For ε̃12 = 0.99 there are a few interfacial entanglements

at t > 0.2Mτ and GI rises noticeably after this time. However the equilibrium density of entangle-

ments at long times is far below the bulk value needed for significant shear strength.18

For the miscible case we found that stable craze formation was associated with saturation of

the areal density of interfacial strands at Σ ∼ 0.018a−2. For ε̃12 = 0.99, 0.98 and 0.95, Σ at the

equilibrium interface is ∼ 72%, 34% and 12% of the saturation value needed for stable craze

formation. In all cases the equilibrium GI is comparable to that for miscible interfaces at the time

when they have reached a comparable Σ.

4 Summary and Conclusions

We have presented detailed studies of the evolution with welding time of interfacial entanglements

and the tensile fracture energy of welded polymer interfaces. For miscible polymer interfaces at

times less than tc ∼ 0.1Mτ , there is a clean fracture along the initial interface. The ends of chains

that have diffused across the interface are simply pulled out. The small fracture energy is related

to the friction resisting chain pull out.

For t > tc the interface is strong enough to support craze formation. Direct examination of

interfacial entanglements shows that the areal density Σ of chains that have diffused far enough

to form at least one topological constraint with chains on the opposing surface saturates at tc.

This first TC is sufficient to transfer stress and stabilize the craze. However the interfacial region
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remains weak and for t < ts ∼ 0.5Mτ the craze eventually fails through chain pullout near the

interface. For t > ts chains are entangled enough that craze breakdown produces chain scission.

This is the mechanism of craze failure in the bulk and the interfacial craze is as strong as the bulk

for t > tb ∼ 3Mτ . This is the same time where the interfacial shear strength saturates and coincides

with the recovery of a bulk density of entanglements in the interfacial region.6

The interfacial fracture energy GI is calculated by using our simulation results as inputs to

Brown’s fracture model. As in experiment, GI increases roughly as t1/2 before saturating at the

bulk fracture energy Gb. A linear correlation between GI and the density of interfacial entan-

glements is observed until GI saturates at Gb. A similar linear relation between shear strength

and interfacial entanglement density was observed previously.6,18 However the increase in shear

strength is only a factor of 3 while the fracture energy increases by two orders of magnitude.

We also simulate tensile failure at immiscible polymer interfaces. Due to the lack of entan-

glements across the interface, the dominant failure mechanism is chain pullout at the interface

without stable craze formation. This reduces the interfacial fracture energy GI . However, once the

interfacial width rises above the threshold value for entanglement development, GI is dramatically

increased.

The above studies are for the simplest polymer model that captures the effects of entangle-

ments. In a recent study of thermal healing of cracks we considered the effect of increasing chain

stiffness and thus lowering the entanglement length. The results show that interchain friction may

compete with entanglements in determining interfacial strength.7 We hope that our findings spur

further studies with more realistic potentials and can be used to improve existing macroscopic

fracture models of polymer glasses and interfaces.
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