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ABSTRACT  

PEG stearates are extensively used as emulsifiers in many lipid-based formulations. However, 

the scheme of the principles of the lipid-surfactant polymer interactions are still poorly 

understood and need more studies. A new phase diagram of lecithin/ PEG 40 monostearate/ 

water system at 30 ºC is reported. Firstly, we have characterized the binary PEG 40 

monostearate/ water system, by the determination of the critical micelle concentration (CMC) 

value and the viscous properties. Then, the ternary phase behavior and the influence of phase 

structure on their macroscopic properties are studied by a combination of different techniques, 

namely, optical microscopy, small-angle X-ray scattering, differential scanning calorimetry and 

rheology. The phase behavior is complex, and some samples evolve even at long times. The 

single monophasic regions correspond to micellar, swollen lamellar, and lamellar gel phases. The 

existence of extended areas of phase coexistence (hexagonal, cubic and lamellar liquid 

crystalline phases) may be a consequence of the low miscibility of S40P in the lecithin bilayer, 

as well as, of the segregation of the phospholipid polydisperse hydrophobic chains. The presence 

of the PEG 40 monostearate has less effect in the transformation to the cubic phase for lecithin 

than that found in other systems with simple glycerol-based lipids.  
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INTRODUCTION  

Phospholipids and fatty acids are models to mimic the biological membranes because of the 

formation of lamellar lyotropic liquid crystal. Lecithin is a well-tolerated and non-toxic 

amphiphile that constitutes the lipid matrix of many biological membranes. The phase behavior 

in lecithin/ water and related systems have been extensively studied by Luzzati and co-workers1, 

2. However, until today, it is difficult to explain why solid and liquid-like chains coexist in the 

same bilayer over a range of temperatures. This implies differences in the thickness of different 

regions in the same bilayer3. In view of the interest of this kind of amphiphilic bilayer structure, 

the interactions between surfactants and fatty acids with lipids have been broadly studied.  

Amphiphilic substances can be dissolved in the lipid aggregates and have the ability to destroy 

the lipid membranes and transform them into surfactant –lipid micelles (with surfactants) or into 

hexagonal and cubic phase (with fatty acids)4. Lipids with cationic surfactants manifest extensive 

swelling of the lipid’s lamellar phase, with a strong dependence of lipid-surfactant electrostatic 

interaction effects on the lipid phase state5, while, in the presence of non-ionic surfactants such 

as Triton X-1006, there is no detectable swelling of the lamellar phase. Interaction of lipid with 

anionic surfactant results in a breakdown of the lamellar structures7, 8.  

In the literature, ternary phase diagrams and phase properties of systems with lecithin, water 

and different oils have been studied, in particular for cyclohexane9, decane10, isooctane10 and 
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different esters derivatives of fatty acids such as isopropyl myristate11, ethyloleate or isopropyl 

palmitate12. Those systems are of great interest due to several reasons: i) the water-rich region is 

an example of the effect of hydrophobic molecules on lipid bilayers, which phase 

transformations are involved in some biological processes as membrane fusion and budding; and 

ii) in the water-lean region occurs the formation of giant cylindrical reverse micelles upon the 

addition of small water amounts (organogels) with viscoelastic properties. Moreover, through the 

critical analysis of the different ternary phase diagrams, the fatty acid esters behavior is markedly 

different from that of hydrocarbons. In particular, in the presence of fatty acid esters there is a 

large portion of the phase diagram occupied by a three-phase coexistence (water, oil, and 

lamellar phase) instead of microemulsion such as Winsor equilibria9, 10, 12. The differences in the 

behavior have been explained by the different ability of the oils to swell the lecithin tails12. In 

addition, phosphatidylcholine/ fatty acid mixtures in water may also form inverse hexagonal and 

cubic phases4. The longer the chain length of a homologous series, the greater the preference of 

inverse hexagonal phase at the expense of the inverse bicontinuous cubic structure13. Other 

aqueous systems based in lecithin and biocompatible oils14, in the presence of alcohols as 

emulsifiers, form microemulsions and emulsions15-17.  The addition of alcohol decreases the 

rigidity of the lipid bilayer structures and leads to the formation of the microemulsion. 

 The interactions between lipid and polymer have also been studied7. The presence of 

polyethylene glycol (PEG) (PEG-6000 or PEG-20000) does not affect the binding of water to the 

choline groups of lecithin significantly18. In the phase diagram, 18 wt% of polymer may be 

solubilized easily in the lamellar phase with about 10 wt% water, and the solubility of the 

polymer increases upon further reduction of water content. However, other authors have reported 

that the presence of PEG-8000 induced dehydration of the phospholipid polar head that caused 
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changes in the vesicle size and form in lipid bilayers, e.g. dipalmitoylphosphatidylcholine 

(DDPC) and dimyristoylphosphatidylethanolamine (DMPE)19. The inclusion of phospholipids 

with grafted PEG chains also greatly increases the stabilization of liposomes20.  In the case of 

simple glycerol-based lipids, the presence of glyceryl stearate and PEG monostearate promotes 

higher and faster transformation into the viscous cubic phase of glyceryl monooleate (GMO), 

which is used as favorite drug release matrix21. Moreover, the emulsifier and surface modifier 

properties of a series of PEG stearates  favor large microemulsion regions (mainly water-in-oil) 

for the glyceryl monocaprate/ Tween 80/ water system22. This effect is more pronounced as the 

PEG chains get longer22. Microemulsions also occur in several aqueous systems with glyceryl 

monostearate (GMS), oleic acid (OA) or GMS/ OA as oil phases, in the presence of PEG 40 

monostearate/ polyoxyethylene-b-polyoxypropylene (F68) as complex emulsifiers23; and for 

systems with glycerol monostearate (GMS) or vegetable oil using nonionic emulsifiers (F68, 

PEG 40 monostearate, Brij 78, soybean phosphatidylcholine and Tween 20) and ionic emulsifier 

(deoxycholic acid sodium, DAS)24. PEG 40 monostearate is considered as a non-ionic 

emulsifying surfactant used for the formulation of cosmetic O/W emulsions (HLB of 16.9), and 

it has been also used as surfactant modifiers on solid lipid nanoparticles22-24.   

Lipid-PEG bilayers are biologically friendly and physically stable. These facts are very 

interesting for drug delivery applications21-24. The advantages of using a PEG derivative are the 

hydrophilicity, high specificity to its target, and biological inertness to other parts of the body25. 

For all those, PEG stearates are extensively used as emulsifiers in cosmetic applications or 

proposed as additive in drugs carriers21-24 but, in return, there are only few studies of the effect of 

PEG stearates on the phase transformation of the lipid-based formulations22-24. In our opinion, 

there is a lack of a sufficient number of comprehensive phase diagrams outlining the principles 
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of the lipid-polymer surfactant interactions. For this reason, in this paper, we focus on the phase 

behavior of the lecithin/ PEG 40 monostearate/ water system. Firstly, we have characterized the 

PEG 40 monostearate/ water system, by the determination of the critical micelles concentration 

(CMC) value and the viscous properties. Then, the pseudoternary phase behavior and the 

influence of phase microstructure on their macroscopic properties (optical, and calorimetrical) 

are studied at a constant temperature. The viscoelastic characterization of this system is of 

significant interest because the industrial processing for the manufacture of the commercial 

products with PEG stearate and/or lecithin involves the application of stress.  

 

 

 Materials and Methods 

Sample Preparation. Soybean lecithin (Epikuron 200) was obtained from Degussa and was 

used without further purification. This lecithin is a mixture of phosphatidylcholines with acyl 

chains of different lengths and degree of unsaturation. The main component (at 68-70 wt%.) is 

linoleic acid, which has C-18 with two double bonds. The presence of high unsaturation (>84%) 

in the acyl chains brings down the melting temperature below 25 °C. The lecithin contains about 

0.8 wt%. water, according to Degussa. PEG 40 monostearate, designed commercially as TEGO® 

Acid S 40 P (and named S40P for short in this paper) was a kind gift from Evonic Goldschmidt 

GmbH (Essen Germany). Its chemical structure (CH3-(CH2)16CO(-OCH2CH2)40-OH) shows that 

it is a hydrophobically modified PEG polymer (HM-PEG) with surfactant properties due to a 

hydrophobic tail of seventeen carbons (stearate) and the large hydrophilic head with forty 

poly(oxyethylene) groups. The presence of free ethylene oxide groups is negligible (<1 ppm).   
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All the samples were prepared by weighing the appropriate amounts of each component in 

small screw-cap vials. In order to mix the samples and remove bubbles, each mixture was 

centrifuged inverting the tube many times per day for several days at 4000 rpm until it was seen 

to be macroscopically homogeneous. If the sample could not be mixed very well at room 

temperature, it was heated at 65 ℃ during the homogenization process to facilitate a better 

mixing of the components. Once the samples were ready, they were stored in a water bath at 30.0 

± 0.1 °C. All samples are labeled in this paper as content of lecithin/ S40P (at wt%.). Water 

composition is determined by the remaining up to obtain 100 wt%.  

 

Surface Tension. The surface tensions of the aqueous S40P solutions at various concentrations 

were determined using the ring method with a LAUDA TE-1C tensiometer. All measurements 

were carried out at 30.0 ± 0.1 °C, and each experiment was repeated several times and a good 

reproducibility was achieved. 

The critical micelle concentration (CMC) value was determined as the sharp break point in the 

surface tension as a function of the logarithm of S40P concentration. The slope of the linear part 

below the CMC was determined by the method of least squares. The excess concentration Γ2 was 

estimated from the Gibbs adsorption isotherm equation (Eq. 1) and the hydrophilic area per 

molecule at the air/water interface by equation 2. 
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where R is the Gas constant, T is the absolute temperature, γ is the surface tension, NA is 

Avogadro’s number, C is the concentration of the S40P surfactant in solution, and a is the 

hydrophilic area per molecule expressed in nm2/molecule. 

 

Optical Microscopy. Birefringent textures of lyotropic liquid crystals were investigated by 

using a Nikon ECLIPSE 50i optical microscope equipped with crossed polarizers and a Nikon 

Coolpix 8400 digital camera. Lyotropic liquid crystal structures were assigned to the different 

samples according to the textures observed. These observations were pursued at least for two 

months as the aggregation state of the sample may change with time. Selected samples in the 

single phase regions were considered for further characterization.  

 

SAXS. Small-Angle X-ray Scattering (SAXS) measurements were carried out using a S3-

MICRO (Hecus X-ray systems GMBH Graz, Austria) coupled to a GENIX-Fox 3D X-ray source 

(Xenocs, Grenoble), which provides a detector focused x-ray beam with λ=0.1542 nm Cu Kα-

line with more than 97% purity and less than 0.3% Kα. Transmitted scattering was detected 

using a PSD 50 Hecus. Temperature was controlled by means of a Peltier TCCS-3 Hecus. 

Because of their high viscosity, the samples were inserted between two Mylar® sheets with a 1 

mm separation. 

The SAXS scattering curves are shown as a function of the scattering vector modulus (Eq. 3),  
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where θ  is the scattering angle. The q values with our set-up ranged from 0.08 nm-1 to 6.0 nm-1. 

The system scattering vector was calibrated by measuring a standard silver behenate sample. 

Because of the use of a detector focused small beam (300 x 400 µm) the scattering curves are 

mainly smeared by the detector width. This, mainly produces a widening and distortion of the 

peaks without strong effects on the peak position. 

Liquid crystal assignation was made primarily from peak position pattern. Lamellar structures 

(peak position pattern 1:2:3:4...) were further fitted to the Modified Caillé Gaussian model26, 27 to 

gather complementary information about bilayer characteristics. This model comprises the use of 

a structure factor for a stack of lamellae and a bilayer form factor, which describes the electronic 

density profile as the combination of a low electronic Gausian corresponding to the methyl 

groups contribution and two high electron density Gausian centered at ±ZH describing the polar 

heads. The correlation distance between bilayers is d, the number of correlated layers forming 

the stack is N and the Caillé parameter η1 is inversely related to the elastic constants of the 

lamellar phase28. The Caillé parameter decreases as the bending and bulk elastic modulus 

increase, that is, a small parameter implies a rigid and ordered phase. The instrumentally 

smeared experimental SAXS curves were fitted to numerically smeared models for beam size 

and detector width effects. A least squares routine based on the Levenberg-Marquardt scheme 

was used26.  

 
 

Differential Scanning Calorimetry (DSC). The DSC measurements were carried out by 

using a DSC 6 Thermal Analysis System (Perkin-Elmer Corporation U.S.A.). 10 mg of the 

sample were inserted in aluminum pans for each measurement in a temperature range from 8 ºC 
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to 90 ºC, with a constant heating rate of 1 ºC/ min. Before each measurement, the sample was 

carefully set at the bottom of the pan in order to avoid bubble formation, and then kept at 8 ºC for 

10 min to get uniform temperature in the system. The phase transitions temperatures and 

transition type were determined from the peak maximum and the shape of the calorimetric 

curves.  

Rheology. Flow and oscillatory behavior have been measured using a Rheometer Carrimed 

CSL 100. Cone-plate geometry with a cone radius of 10 mm and an angle of 4:0:31 

(deg:min:sec) was used. All the measurements have been done at 30 ± 0.1 ºC controlled by a 

Peltier system attached to the plate. A chamber was used in order to prevent the evaporation of 

the samples during measurement. All results showed good reproducibility in different runs and 

different replicates. 

Flow curves were measured by applying a logarithmically spaced series of increasing stress for 

2 min. The viscosity (η) was calculated as the ratio of shear stress to shear rate. 

Oscillatory experiments were performed under linear viscoelastic conditions, and the angular 

frequency of oscillation (ω=2πf) was varied from 0.1 to 20 Hz at constant stress. In the analysis 

of the micellar samples, we have applied the Maxwell model. The dynamic properties of the 

Maxwell element (a spring and a dashpot connected in series) can be represented by linear 

differential equations. The solutions of these equations give the desired material functions: 
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where ω is the angular frequency, τ is the relaxation time. The storage modulus (G´) and the loss 

modulus (G´´) are the two components of the complex modulus G* (ratio of stress amplitude to 

strain amplitude) and are connected to the complex viscosity (η*) through equation 6: 

( ) ( )2 2
 G´  G´́

*η
ω

 +
 =     (6) 

The Maxwell model predicts that, at high angular frequency, the storage modulus attains a 

plateau value while the loss modulus passes over a maximum with the angular frequency. The 

inverse of the frequency at which G’ and G” intersect gives the value of the relaxation time. 

 

 RESULTS AND DISCUSSION  

Binary S40P/ water system 

PEG 40 monostearate in water forms micelles from above the critical micelle concentration 

(CMC) up to a value of 70 % (wt.) S40P in water. Its CMC value, obtained from surface tension 

corresponded to 51 µM, at 30 ºC (Fig. S1, given in Supplementary Information). From Gibbs 

adsorption equation (Eq. 1), the surface excess concentration was found to be 1.24 ·10-6 mol/m2, 

with an area per molecule of 1.4 nm2, calculated by Eq. 2. Those values are similar to those 

obtained for the same system at 23 °C at the water-air interface measured by a fluorimetric 

method with a neutral fluorescent probe, and by a micropipet technique for interfacial tension 

measurements developed by the authors29. The relatively large area per molecule is consistent 

with the large PEG molecule exerting a lateral pressure and is the consequence of the large 

hydrophilic head with forty poly(oxyethylene) groups. 
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We have also studied the viscosity of the micellar samples by flow experiments. The behavior 

was Newtonian in all cases, with viscosity independent of the shear rate. In Fig. 1, we can see 

that the zero-shear rate viscosity increases strongly by increasing the S40P content up to 50% 

(wt.). The existence of a maximum can be attributed to the presence of a greater number of 

aggregates followed by their increase in size. If micelles are large enough (at the maximum) to 

be very flexible, the viscosity decreases. The same observation has been found in 

microemulsions with HM-PEG polymers30, and for micelles in systems with surfactants30-32.  

 

 

Figure 1 Logarithmic plot of zero-shear-rate viscosity as a function of the S40P content, at 30 ºC 

(micellar phase). Series at constant lecithin/ S40P (wt%.) ratio:  (�), 0.05; (�), 0.11; and (�), 

binary S40P/ water system. The lines are a guide to the eye. 

 

Ternary lecithin/ S40P/ water phase behavior. 

In general, if the research wants to give a comprehensive interpretation of the system in terms 

of attraction/repulsion forces, free energies, or to create a theoretical model that may permit the 

interpretation of the phase diagram, all the components of a system should be pure. This allows 
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reducing and controlling the number of variables under study. We note here that we focus on a 

real system since lecithin and S40P are widely used in everyday life as surfactants, and/or 

mixtures adopted in human and animal food, medicine, cosmetic and pharmaceutics. Therefore, 

it is more difficult to extract scientific information from such complex phase behavior. 

Nevertheless, the results improve the knowledge of phase behavior of commercially applied 

systems.  

 The pseudo-ternary phase diagram of lecithin/ S40P /water system at 30 ºC, determined by a 

combination of different techniques such as optical microscopy with crossed polarizers, SAXS, 

DSC, and rheology, is given in Figure 2. Phase boundaries are delimited with error smaller than 

3 wt%. The ternary system shows a fluid isotropic phase and several lamellar liquid crystalline 

phases, separated by multiphasic regions, where other liquid crystalline phases coexist.  
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Figure 2. Phase diagram for the soybean lecithin-S40P-water system at 30℃. L1, isotropic 

micellar region; Lam, lamellar phase; H2, reverse hexagonal phase; I, inversed micellar cubic 

phase; S, S40P; L, lecithin; w, water. Solid lines indicate fixed ratio compositions of measured 

samples by different techniques. Circles correspond to the experimental points discussed in the 

data analysis. 

 

The lecithin/ water system forms a lamellar phase at 63 wt % lipid. Below this lipid content, 

there is a biphasic region consisting of the lamellar liquid crystal dispersed in water33. A narrow 

area of micelles (L1) is formed along the binary S40P/ water axis with the maximum uptake of 

about 7 wt % lecithin, at equal proportions of S40P and water (Fig. 2). This is a clear, yellowish 
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isotropic and fluid solution. In the water-rich corner, there is an emulsion region that separates 

by ageing in less than one week in two macroscopic phases: white precipitate (bottom) and 

isotropic solution (up). None of them was further studied in detail. With increasing S40P content, 

there is a region of undefined milky fluid dispersions, where lamellar domains dispersed in 

isotropic bulk are clearly identified by optical microscopy textures. Besides, a further increase in 

S40P content, between the isotropic region L1 and the denoted lamellar region (Lam), samples 

have the macroscopical appearance of isotropic turbid gels. They do not show phase separation, 

even if the samples are centrifuged at 4000 rpm during an hour. 

In the region of the phase diagram given by the composition range of 0.04 < S40P/water  

(wt%) < 1, which contains higher amount of water respect to the S40P, there are two different 

lamellar structures, according to textures by optical microscopy with crossed polarizers (Fig. 3), 

SAXS, and DSC studies (discussed at the following sections). A typical Maltese crosses texture 

of lamellar phase (Fig. 3a) is appreciated for samples of the liquid crystalline lamellar  region 

while a “white” birefringence texture (Fig. 3b) appears for samples with more than 60 wt % 

lecithin content in the lamellar gel region (see also Fig. 2). The latter is similar to the texture of 

the lamellar gel phase of the binary lecithin/water system. In the upper-region of the phase 

diagram, with composition S40P / water (wt%)  > 1, a typical mosaic texture of a “concentrated” 

lamellar phase is detected (Fig. 3c). Nevertheless, analyses with complementary techniques 

always detected coexistence with other phases. Because the samples were prepared with amounts 

that differ less than 2 wt% in composition, the single phase region must be very small. Those 

results are discussed in the following sections. 



 

16

 

Fig. 3. Photomicrograph of the samples labeled as lecithin/ S40P (wt%): (a) 35/ 30; b) 68/ 10; c) 

55/ 30; d) 75/ 18.  

 

The maximum swelling capacity of the pure lecithin bilayer increases enormously by the 

addition of S40P. Even with low amounts of S40P (at 2 wt%), the bilayer swells to 80 wt% 

water, and the stability of the lamellar phase extends to lower lecithin content, from 63 wt% of 

lecithin in binary lecithin/water system to 20 wt% for the ternary system (see Fig. 2). Completely 

different behavior is found for the lecithin/ Triton X-100 / water system at 305K, where only an 

isotropic solution L1 phase exits. It can solubilize a maximum of 10 wt% of lecithin6. This 

nonionic surfactant has shorter ethylene oxide chain (n= 9-10). In the case of lecithin/ PEG/ 

water systems, no significant change in the stability of the lamellar phase was detected, nor any 

effect on the chain length of the ethylene oxide groups18. Remarkably, the extent of swelling in 

presence of S40P is more comparable to the addition of ionic surfactants to the lecithin/ water 

system than other PEG or PEG-based surfactants. A low miscibility of the S40P in the lipid 

bilayer and a large hydration of the 40-ethylene oxide groups could favor the extent of the 

swelling. The different behavior could be due to the coexistence in the same molecule of an 
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appreciably large S40P head group and a still important hydrophobic chain, which still anchors 

the molecule to the bilayer. 

At water content lower than ∼16 wt%, the lamellar gel phase is in equilibrium with a cubic 

liquid crystalline phase in the proximity of the lipid corner of the phase diagram. Besides, a 

reverse hexagonal liquid crystalline phase (H2) coexists in equilibrium with a “concentrated” 

lamellar phase and isotropic matrix, in a quite large region extending along the lecithin/ S40P 

axis (Fig. 3d). The area of occurrence of those monophasic liquid crystalline regions (cubic and 

H2) could not be precisely delimited. Areas where optical microscopy technique shows 

coexistence of those phases (Lam + I; Lam + H2) have been marked on the phase diagram (Fig. 

2). 

 

SAXS 

We have studied the SAXS patterns of several compositions in the ternary phase diagram at 30 

ºC. All samples are labeled as % lecithin/ % S40P, given in wt%. The measurements were 

performed after six months from sample preparation. All of the studied samples show the 

presence of lamellar phases characterized by quasi-Bragg peaks at positions 1:2:3... with respect 

to the beam center. Some of the samples show the coexistence of the lamellar phase with other 

structures at smaller q than the main peak of the bilayer. The scattering patterns have been fitted 

to a modified Caillé model with a bilayer electronic density model based in three Gausian; one of 

them describing the methyl groups and the two other describing the polar heads. The fit has been 

restricted to the region where the stacked bilayer is the main contribution to the scattering curves. 

The Scattering curves together with the fitted curves are shown in figure 4. 
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For samples in the lamellar region (see dots in Fig. 2), a small peak at smaller q values than 

that of the main peak of the lamellar phase (pointed by an arrow in the Fig. 4) is clearly 

identified for sample 35/ 10. The same peak could be present in the form of the broadening of the 

main peak also in samples 55/ 23 and 23/ 10. This could indicate the coexistence of a separated 

highly-swollen lamellar phase with a repeating distance of 142 Å. In our opinion, this could be 

more related to the sedimentation of lamellar bilayers by ageing, or segregation of domains 

consequence of the chain heterogeneity of the lipid2. Although the possibility of a Pβ phase is 

plausible, the presence of this phase is not confirmed by the presence of WAXS peaks in the 

expected positions. The WAXS spectra of these samples did not show any distinct features. On 

the other hand, the high level of unsaturation in the lecithin chain, favor a lower chain melting 

temperature, which is below 25 °C. 
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Fig 4. SAXS scans for different samples. Composition (as lecithin/ S40P, wt%.) and the 

corresponding phase assignation are given in the curves. Symbols: L1, isotropic micellar region; 

Lam, lamellar phase; gel, lamellar gel; H2, reverse hexagonal phase; I, inversed micellar cubic 

phase; multiph: multiphase region. Lines corresponds to the fitting to the Modified Caillé 

Gaussian model26, 27. The arrows correspond to specific features commented in the text. 

 

The SAXS diffractograms for samples of composition lecithin/ S40P (wt%) of 68/ 10 and 83/ 0 

(in the lamellar gel region) show several Bragg peaks corresponding to a relatively condensed 

lamellar structure with the same repetition distance of 49 Å (Fig. 4). They correspond to a similar 

composition of the bilayer, although not identical. The lamellar repeat distance results 

significantly shorter than the one obtained for a pure lecithin-water Lβ’  bilayer (64 Å)34, 
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therefore, the fitting of the lamellar model may indicate partial interdigitation of the bilayers. 

This has to be attributed to the low hydration level of the pure lecithin sample with only 17% 

water content because a fully hydrated bilayer seems to be achieved only for water contents 

above 40%. Indeed, the fitting of the curve shows the water layer to be reduced with respect to 

fully hydrated DPPC samples with a minor thinning also of the bilayer thickness35. The sample 

83/ 0 was expected to be pure lamellar gel. However, the shoulder on the right of the main peak 

(marked by an arrow) shows the remaining of a different peak appearing short after the sample 

insertion in the sample holder. This peak slowly diminishes and is related to other two peaks also 

diminishing at relative positions 3½:8½:11½, which would correspond a cubic phase Fd3m. This 

reverse cubic phase is formed by inverse micelles with two different radii and is usually thought 

to be produced only in the presence of two differently hydrophobicity molecules, like in mixtures 

diglyceride/ phosphatidylcholine.36 The sample evolves with time and, two phases with repeat 

distances of 57 Å and 48 Å are detected after one year (results not shown). This aging effect, as 

other authors proposed in different lipid structures37, may involve the acid hydrolysis of the ester 

linkage present in the phospholipid chains, resulting in the formation of a fatty acid and a single-

chain lipid that produce bilayer fragments.  

 

Regarding to the sample 68 % lecithin/ 10 % S40P, in addition to the lamellar repeating 

distance, there is an extra band at smaller q (see the arrow in Fig. 4), which could be related to 

the structure of S40P in solution with the hydrocarbon chain in the melt-like state. In this case, 

the scattering seems to correspond to the mixture of these two structures: the water partitions 

between the two phases in similar proportions to that of sample 83 /0 and sample 5/ 47 (in the 
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micellar region). The incorporation of the S40P molecule to the system would distort the bilayer 

repeating distance and, therefore, change this distance and affect the peak sharpness.  

Similar observations are made for the sample of composition 23 % lecithin/ 55 % S40P, where 

the lamellar repeat distance is a little bit shorter (46 Å), and in addition, a similar broad peak to 

the samples in the micellar region (5/ 47) is appreciated at q = 0.027 Å-1 (Fig. 4). The bilayer 

may be dehydrated because of a favorable interaction with the PEG 40 monostearate. However, 

notably, the position of the maxima of the bands, signaled by arrows in Fig. 4, corresponds to 

1:3:6, which, to the best of our knowledge, does not correspond to any described liquid 

crystalline phase.  

Samples of composition of % lecithin/ % S40P contents of 90/ 5 and 50/ 45 present a 

scattering shoulder at lower-q values of the first Bragg lamellar peak at nearly the same position 

(Fig. 4). This could be indicative of structural defects of the bilayer, or of the coexistence of 

another type of bilayers corresponding to a repetition distance of 70 Å. Closer inspection of the 

pattern reveals that the first strong correlation peak and several weaker reflections can be 

indexed according to a body-centered structure (bcc, space group Im3m √2: √4: √6: √8: √10: 

√12: √14: √16) for a cubic liquid crystalline phase. It agrees perfectly with our observations by 

optical microscopy of sample 90 % lecithin/ 5 % S40P (isotropic matrix) and its calorimetrical 

analysis at the end of the whole temperature-up run (discussed later). Higher proportion of 

lamellar phase exists in the sample 90/ 5. The unambiguous identification is helped by optical 

microscopy inspection, where a reverse hexagonal structure is detected in the sample of 

composition 50/ 45, which could also be supported by the sequence of peaks at positions q of 

0.039, 0.0675, 0.078 and 0.103 that correspond to the hexagonal diffraction pattern with q values 
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in the relationship 1: √ 3: 2: √7. Pure cubic or reversed hexagonal liquid crystalline phases have 

not been detected during the observation time. 

 

The main parameters extracted from the Caillé fit to SAXS patterns (see Fig. 4) as a function 

of composition are given in Table 1. In case of samples with constant ratio of SP40/ water = 1 

(see Fig. 2, marked by dots), both the repeating distance (d) and Caillé parameter (η1) decrease 

with increasing lecithin concentrations, while the number of correlated layers (N) increases. 

However, the distance between the polar heads in the bilayer (ZH) does not have a definite trend. 

Therefore, the addition of S40P/ water mixture to the phospholipid bilayer increases fluidity and 

decreases interbilayer correlation. In this series, the jump to the 90/ 5 sample is stronger because 

the amount of interbilayer solvent is very limited and, in addition, the coexistence with a cubic 

phase has been postulated above. 

 

 

Table 1. Parameters of the Caillé fits of the multilayer structures corresponding to SAXS 

patterns of figure 4. 

Sample 

% Lecithin/ % S40P/ % water 

 

d (Å) 

 

ηηηη1 

 

N 

 

ZH 

S40P / water (wt%.)= 1 

05 /47/ 48 (L1) 91.9 0.35 4 17.8 

26/ 37/ 37 (Lam) 89.0 0.0996 18 15.0 

53/ 23/ 24 (Lam) 82.7 0.083 16 15.6 

90/ 5/ 5 (I+Lam) 47.0 0.0016 107 17.8 
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S40P = 10 wt%. 

23/ 10/ 67 (Lam) 83.9 0.10 7 16.3 

35/ 10/ 55 (Lam) 93.9 0.15 53 16.1 

68/ 10/ 22 (gel) 48.0 0.029 150 16.0 

Lecithin ∼∼∼∼ 24 wt% 

23/ 10/ 67 (Lam) 83.9 0.10 7 16.3 

26/ 37/ 37 (Lam) 89.0 0.0996 18 15.0 

23/ 55/ 22 (multph) 46.2 0.035 54 15.2 

Other studied samples 

83/ 0/ 17 (gel) 48.2 0.016 28 17.5 

50/ 45/ 5 (H+Lam) 47.0 0.016 14 15.4 

Symbols: d, correlation distance between bilayers; η1, Caillé parameter; N, number of 
correlated layers forming the stack; ZH, correlation distance between the polar heads in the 
bilayer. L1, isotropic micellar region; Lam, lamellar phase; gel, lamellar gel; H2, reverse 
hexagonal phase; I, inversed micellar cubic phase; multiph: multiphase region. 

 

 

For swollen lamellar samples at constant content of 10 % SP40 (samples 23/ 10 and 35/ 10, 

marked on figure 2), exchanging phospholipid by water does not have a strong effect on 

elasticity of the bilayer (η1), although it seems to have some effect on bilayer correlation (N).  

The stronger effect corresponds to the change from the swollen lamellar to the rather dry 

lamellar gel phase (sample of composition 68 % lecithin /10 % S40P) where the Caillé parameter 

η1 decreases one order of magnitude and the repetition distance halves, while the number of 

correlated lamellae (N) increases significantly.  

At nearly constant phospholipid content (at ∼24 wt%., see phase diagram in Fig. 2), the 

number of correlated lamellae (N) and bilayer rigidity (inversely related to the Caillé parameter 
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value) increase as the water is exchanged by S40P. Again, the effect on Caillé parameter is 

stronger when the lamellar phase becomes dry, for sample 23% lecithin/ 55 % S40P. This sample 

presents repetition distance corresponding to approximately half the repetition distance of the 

swollen samples. It is located in the multiphasic region because, in addition to the lamellar phase, 

present also some bands corresponding to an unknown phase, as was mentioned above.   

 

 

DSC 

A mapping of the phase diagram was performed to determine the phase transitions induced by 

temperature by differential scanning calorimetry. Thermograms were recorded with good 

reproducibility regarding the transition temperatures, and the presence of S40P causes decrease 

of the phase transitions sharpness (Fig. 5a). The thermotropic behavior of the self-assembling 

lipid depends on the initial phase of the sample. However, asymmetry broad peaks are observed 

for all samples and the different phase transitions. The nature of the structures formed after the 

whole up-temperature-run was identified by polarized optical microscope during the cooling 

process (Fig. 5b). Previously, we checked by optical microscopy that the microstructures formed 

in the up-temperature ramp were the same than those formed in the down-temperature ramp. 
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Fig. 5. Up: DSC thermograms of different samples. Composition (as lecithin/ S40P, wt%.) and 

the corresponding phase assignations are given in the curves. Bottom: Photomicrographs during 

the cooling process after the up-temperature run: (a) 35/ 30 (Lam); (b) 5/ 47 (L1); (c) 66/ 10 (gel 

Lam); (d) 83 /0 (gel Lam). Arrows point isotropic cubic region and “H2” point reverse hexagonal 

structure. 

 

 At 30ºC, sample 35/ 30 (given as lecithin/ S40P, wt%.) corresponds to a sample build up 

mainly by swollen bilayers, according to SAXS data of several samples located in the same 

region, such as 35/ 10; 23/ 10 or 55/ 23 (see Figs. 2 and 4). It’s thermogram shows three heating 

endothermic transitions, which could correspond to fluid lamellar (II, aprox. 42 ºC), cubic 

(shoulder III, aprox. 65 ºC) and reverse hexagonal (IV, aprox. 77 ºC) phase transitions in order of 

increasing temperature, respectively. This could be an expected sequence in comparison to the 

binary soybean lecithin/ water system1, 33. The Lα-to-H2 transition has been detected at 61.6 ºC 

for phosphatidylethanolamine38, but in case of lecithin, a cubic structure followed by a reverse 
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hexagonal seems to be preferred1. The transition temperature value of 42 ºC (peak II) is in the 

same temperature range that the reported for the gel-to-fluid lamellar transition in the system 1,2-

dipalmitoyl-sn-3-phosphocholine (DPPC)39-41. However, we can not assert this transition of gel 

(Lβ or Pβ)-to-fluid (Lα) lamellar bilayers because, we have not detected any gel-type bilayer by 

SAXS spectra either WAXS reflections for the samples in the same Lam region of the phase 

diagram at 30 ºC. Our experimental results agree with the high unsaturation of the acyl chains in 

the used lecithin (Epikuron 200) that results with a melting temperature below 25 °C. 

Concerning the peak at the highest temperature (IV), it should correspond to the cubic-to-reverse 

hexagonal phase transition according with the photomicrograph taken during the cooling process 

after the DSC up-temperature run (Fig. 5b, bottom). The high viscosity and the black domains in 

the polarized microscopy photograph could indicate the existence of the cubic liquid crystalline 

phase, and there is probably an overlapping of two different structures since, in addition, we 

detected broad peaks. In this case, there is a merging of the lamellar-cubic (III) and cubic-

hexagonal (IV) transitions. Both hypotheses are reinforced by the DSC thermograms of samples 

in the isotropic solution phase (sample 5/ 47, Fig. 5b bottom) where there is isotropic matrix in 

the photomicrograph up to 70 ºC. For that sample, the peak (I) at ~33 ºC could correspond to the 

transition from the isotropic fluid solution to a bilayer structure. The peak (I) is sensed in the 

sample of composition 66 % lecithin/ 10 % S40P (in the lamellar gel region), where SAXS 

analysis fits better, considering the existence of S40P in solution with the gel bilayer structure. 

Furthermore, for sample 83% lecithin without S40P, where micelles are absent, the peak (I) is 

not present. The different heat flow ratio between peak (III) and (IV) for samples 66/ 10 and 83/ 

0 may be due to of different proportion of the coexisting phases.  
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The fact that the onset transition temperature at peak (I) remains less affected with the content 

of S40P, and the asymmetry of broad peaks may indicate the presence of the S40P-rich and –

poor domains in the bilayer, consequence of the low miscibility of the S40P in the lecithin 

bilayer. Similar effect is reported for other phospholipid bilayers containing ceramides.42 

 

RHEOLOGY  

Micellar region 

Samples behave as pseudoplastic, with the exception of the samples with 3 wt% lecithin and 

65% or 70% of S40P (near the phase boundary) that are Newtonian (micellar flow curves are 

given in the Supplementary Information as figure S2). For pseudoplastic samples, the high 

values of viscosity, as well as the dependence of the viscosity with shear rate, are signs that these 

mixed micellar aggregates in aqueous solution are elongated32, 43, 44. Initially, the value of 

viscosity, ηo, is constant, due to the non-spherical aggregates distributed randomly, but above a 

critical shear rate (
o

cγ ) these aggregates tend to orient in the direction of flow causing a decrease 

in viscosity. In particular, the value of 
o

cγ  tends to decrease as the lecithin content increases. The 

viscosity values at zero-shear rate (ηo) for the series at constant lecithin/ S40P ratio go through a 

maximum by increasing the S40P content in the sample as it was clearly observed in the binary 

S40P/ water system, and in several viscoelastic micellar systems with surfactants (Fig. 1)30-32. On 

the other hand, the presence of lecithin has much less effect on the ηo values than the content of 

S40P (Fig. 1).    

Lecithin in water forms bilayers. Therefore, if it is assumed that S40P micelles do not interact 

with the lipid bilayers, the relative viscosity of the lamellar phase (0 0,dte

η
η

) could be calculated by 
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dividing the viscosity value of a sample of the lecithin/ S40P/ water system by the viscosity 

value obtained for the “solvent” (i.e., micelles of S40P in water) at the corresponding S40P 

composition. According to Fig. 6, there is a decrease in the relative viscosity, but starts to rise 

again at a content of S40P similar to that at which the binary water S40P has its maximum in 

viscosity (see Fig. 1). This is an indication that there are interactions between S40P and the lipid 

bilayer aggregates in the whole range of composition. In the absence of charges of the S40P, the 

nature of those interactions should be hydrophobic. 

 

Fig. 6. Relative viscosity for series at nearly fixed ratio of S40P/ lecithin (wt%): �, ∼ 0.05; �, ∼ 

0.11.  The line is a guide for the eye.  

 

The viscoelastic properties of two samples with ∼ 6 wt% lecithin content and different amount 

of S40P were also checked by using oscillatory experiments (Fig. 7). They correspond to the 

same lecithin/ S40P (wt%) ratio of 0.11. Their behavior can be described by the Maxwell model, 

with a single relaxation timeτ and a single instantaneous elastic modulus Go. The modulus of the 

complex viscosity is constant at the lower frequencies studied and that value agrees with the 

zero-shear-rate viscosity ηo obtained from the stationary flow experiment of the respective 
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samples (see Fig. 1). Both moduli, G’ and G”, increase with the angular frequency with the 

slopes predicted by Maxwell model: -2 and -1, respectively. Although, the Maxwell model 

predicts that, at high frequency, the storage modulus G’ attains a plateau value (Go) while the 

loss modulus G” passes over a maximum with the frequency, those are not obtained in our 

frequency observation window. Then, G’ and G” were fitted simultaneously using the Maxwell 

equations, where the relaxation time τ and the plateau modulus are the only parameters of the fit. 

Values of relaxation times of 9.5 (± 0.5) ms and 4.8 (± 0.2) ms correspond to samples with S40P 

contents of 50 and 54 wt%, respectively. These values are of the same order of magnitude than 

viscoelastic rodlike micelles in surfactant systems43. Also, Go results in values of 2.7 (± 0.2)·103 

Pa and 3.7 (± 0.3)·103 Pa by increasing the S40P content, which indicates that the sample with 

54 wt% of S40P is more elastic than the other one, and, in particular, its relaxation time halves 

the other one. 

 

Fig. 7. Complex viscosity modulus ||||ηηηη*||||  (    ∆∆∆∆), storage modulus G’ (����), and loss modulus G” (���� ) 

versus frequency of samples at mixed micellar region. Compositions of lecithin/ S40P (wt%): 6/ 

54, hollow symbols; 5.5/ 50, filled symbols. Lines are the fit to the Maxwell model, with 

χ2=0.00514 and χ2=0.00759, respectively. 
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The zero-shear viscosity in solutions of entangled rodlike micelles is given by the product of 

the shear modulus and the longest structural relaxation time in the system, o oGη τ= . Then, the 

viscosity is the result of structure and dynamic behavior through the structural relaxation time43. 

For the studied samples of composition 6/ 54 and 5.5/ 60 (lecithin/S40P, wt%.), both relaxation 

time and modulus of the complex viscosity decrease oppositely to S40P content in the sample. In 

conclusion, S40P composition affects drastically the size and stiffness of the elongated (e.g. 

rodlike) micellar aggregates, as well as their dynamic properties. From this perspective, it is 

likely that for the maximum of ηo curve described by the flow experiments (Fig. 1), the micelles 

could reach their maximum length and, with further amount of SP40 (> 50 wt%.), they could 

become more flexible. 

 

Lamellar Phases 

The rheological behavior of the lipotropic liquid crystalline phase is often strongly dependent 

on shear history; therefore, we have carried out all the experiments under the same conditions, as 

described in the experimental section, and without preshear-treatment. The viscosity curve of 

samples of composition 35 % lecithin and 30% S40P presents two power law regions separated 

by a region where the viscosity passes through a maximum centered at a critical shear rate, 

ca.120 s-1 (Fig. 8). The maximum might imply structural changes under shear at the critical shear 

rate. The high water content (35 wt%.) might produce defects in the bilayer, already before 

shearing, which also favors the formation of the maximum of viscosity45. Similar flow behavior 

has been detected in the lecithin/ DDAB/ water system with an associative interaction between 

two binary lamellar phases45, 46, and in other lamellar liquid crystalline phases containing other 
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types of surfactants45, 47. Structural changes are related to the applied stress values but also to the 

time during which those stresses are applied. However, this aspect has not been studied further.  

 

 

Figure 8. Viscosity as a function of shear rate for samples of composition S40P/ lecithin (wt%): 

� 35/ 30 (in Lam phase); � 40/ 35 (in Lam phase); � 68/ 10 (in Lam gel phase).  

 

For samples with lower water content (∼24 wt%.), the viscosity decreases monotonically with 

the increase of shear rate (Figure 8). This behavior is similar to that found for open bilayer 

lamellar structures with lamellae oriented to the streamline or to vesicles, with a progressive 

increase of sizes45, 48, 49. The sample of the lamellar gel region has viscosity values several orders 

of magnitude higher than the sample in the swollen lamellar region. 

The oscillatory experiments on these same samples are discussed based on the values of the 

loss tangent ( δ =tan "/ 'G G ), shown in Fig. 9. It indicates that all these samples are more elastic 

than viscous as the storage modulus (G’) is higher by about one order of magnitude than the loss 

modulus (G”) in the entire range of frequency investigated. The loss tangent is slightly frequency 

dependent, which results not completely parallel moduli. However, the structural relaxation time 
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can be considered that tends to infinity. This behavior corresponds to the so called gel behavior 

and is comparable to results obtained in the lamellar phases of different topologies (vesicles and 

stacked bilayers) of many surfactant systems44, 50, and in particular, with lecithin45, 46. Samples in 

the lamellar region (40/ 35 and 55/ 23) have lower elasticity than samples in the lamellar gel 

phase (68/ 10) (i.e., the lower tanδ, the greater the elasticity). As the water content is nearly 

constant, the loss tangent suggests a more elastic consistency of the bilayers with increasing the 

lecithin concentration. On the other hand, the complex viscosity modulus decreases strongly with 

slopes close to -1, thus corresponding to gel behavior51.  

Although literature reports indicate the co-existence of different types of lamellar phases in 

mixed surfactant systems5, 52, their rheological properties are still not very well understood. 

Nevertheless, some authors connect the existence of planar bilayers with a weak-like response 

(G” is slightly dependent on the frequency) and, even with a high-frequency crossover of G’ and 

G”, as in case of the diluted (< 43 wt% water) lecithin/ DDAB/ water system46. Although there 

are not clear evidences of the later in the lecithin/ S40P/ water system, the loss modulus is 

slightly frequency dependent mostly in samples of the swollen lamellar region (40/ 35 and 55/ 

23) and of the lamellar gel phase (68/ 10), as is deduced from the loss tangent plot (Fig. 9). 

However, from the SAXS measurement, we could not assign a bilayer topology because large 

multilamellar vesicles are equal to flat bilayers at a local level.  
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Figure 9. Loss tangent as a function of frequency for samples of composition S40P/ lecithin 

(wt%): � 55/ 23 (in Lam phase); � 40/ 35 (in Lam phase); � 68/ 10 (in Lam gel phase). 

 

CONCLUSIONS 

Although PEG stearates are extensively used as emulsifiers in cosmetics, or as drug-carriers in 

lipid-based formulations, in the literature there is a lack of extensive studies that allow to outline 

the principles of the lipid-polymer surfactant interactions completely. In this work, we contribute 

to enlarge the existing knowledge by presenting a new phase diagram of lecithin/ PEG 40 

monostearate/ water system at 30 ºC using commercially available reagents in order to approach 

their real life use.  

The phase behavior is complex, and the single monophasic regions correspond to micellar, 

swollen lamellar, and lamellar gel phases. The presence of the PEG 40 monostearate has less 

effect in the transformation of the lecithin lamellar phase to the cubic phase than what it was 

found in other systems with simple glycerol-based lipids such as glyceryl monooleate21. 

Moreover, microemulsion formation might require the addition of other co-surfactants as it also 

occurs for simple lipid systems22.  
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The calorimetric broad peak transitions, the corresponding photomicrographs at the end of the 

temperature-up run, and the complex SAXS profiles reflect that, over a wide composition range, 

several lamellar, cubic, and reverse hexagonal structures coexist. This extended phase 

coexistence may be a consequence of the low miscibility of S40P in the lecithin bilayer as well 

as of the segregation of hydrophobic chains of the phospholipid polydisperse hydrophobic 

chains. In addition, SAXS experiments seem to prove that, PEG 40 monostearate dehydrates the 

bilayer, probably due to its favorable interactions with water molecules. Rheological 

measurements indicate the interaction between elongated aqueous-S40P micelles and lipid 

aggregates. The lecithin content has less influence in the viscosity of the micellar aggregates than 

the S40P content. The latter affects drastically the size and stiffness of micelles, as well as their 

dynamic properties. Both the lamellar gel phase and the swollen lamellar phase have elasticity, 

which is greater for the former. 
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FIGURE S1. Surface tension vs. concentration of PEG-40-Stearate in aqueous solution at 30 °C 

at the water-air interface measured by ring method by a Tensiometer 

 

 

 

FIGURE S2. Viscosity as a function of the shear rate for samples at the isotropic fluid region, 

with different composition of lecithin/ S40P (wt%.), from down to up: (�), 3.0 / 70; (�), 3.0 / 

65; (�), 3.5/ 60; (�), 5.5/ 50; (�), 2.8/ 53; (�), 2.0/ 40; (�), 2.5/ 50; (�), 6.0/ 54.  


