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We report the results of Molecular Dynamics (MD) simulations and formal modeling of the free
energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter
sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force
field potentials were employed in the first protocol. In the second protocol, the special pair was
made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark
spectroscopy. The charge distribution between covalent and charge-transfer states of the special
pair was dynamically adjusted during the simulation run. We found from both protocols that the
breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates
resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV
in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on
the time-scale of primary charge separation resulting in much smaller solvation contributions to
the activation barrier. While water dominates solvation thermodynamics on long observation times,
protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the
reaction. Marcus parabolas were obtained for the free energy surfaces of electron transfer by using
the first protocol while a highly asymmetric surface was obtained in the second protocol. A non-
ergodic formulation of the diffusion-reaction electron transfer kinetics has allowed us to reproduce
the experimental results for both the temperature dependence of the rate and the non-exponential
decay of the population of the photoexcited special pair.

Keywords: Electron transfer, photosynthesis, primary charge separation, solvation, non-ergodicity, reorgani-
zation energy, Stokes shift dynamics

I. INTRODUCTION

The problem of bacterial photosynthesis has received
enormous attention from both experimental and theoret-
ical communities.1,2,3,4,5,6 Here, we consider only the first
step in the sequence of electronic transitions following the
absorption of a visible photon by the special pair of the
reaction center, the primary charge separation. The cal-
culation of the rate of primary charge separation, which
over several decades of intense research has effectively
become the hydrogen molecule of bioenergetics, involves
two components: the electronic communication between
the primary donor and acceptor responsible for electron
tunneling7,8,9 and the Franck-Condon factor describing
the probability of bringing the donor and acceptor levels
into resonance with each other.10,11 Our paper is con-
cerned with that latter part of the problem which we dub
as the energetics of primary charge separation.12,13,14

In addressing the issue of the energetics of charge sep-
aration, we first want to dissect this complex problem
into two, not necessarily simpler, questions: (1) What is
the importance of the structural arrangement of the co-
factors in the reaction center protein? and (2) What are
the roles played by the protein and hydrating water in ac-
tivating electronic transitions? Each of these questions
has generated a significant amount of literature on its
own, and we will not be able to provide a comprehensive
discussion of each topic, focusing instead on our main
goal, the factors affecting the free energy of activation.
Since optical spectroscopy of bacteriochlorophyll co-

factors can be studied separately, the most intriguing

question related to our discussion is how the energetics
of optical transitions and electron transfer are affected
when the cofactors are assembled within the protein ma-
trix. The notion often circulated in the literature5 is that
protein provides a low-polarity environment lowering the
free energy of solvation of embedded cofactors compared
to solvation in water. Even though this statement is
generally correct, we will show below that nuclear sol-
vation approaching the thermodynamic limit of infinite
observation (waiting) time is still quite significant for the
electron transfer dipole formed by difference occupation
numbers (atomic charges) of the electron in the donor
and acceptor states. In particular, solvation of the elec-
tron transfer dipole by water is not fully screened by the
protein and still makes about 1 eV. In addition, the pro-
tein matrix cannot be really considered non-polar since
there is a significant contribution to the reorganization
energy from the nuclear modes of the protein. It turns
out that the notion of weak nuclear solvation of primary
charge separation, required to explain the observed rates,
cannot fully rest on the thermodynamic arguments, and
the dynamics of the protein/water thermal bath need to
be involved.

Solvation dynamics of optical chromophores in dense
molecular solvents have been actively studied in the past
decades.15,16,17 The basic picture, first discovered in nu-
merical simulations18 and later confirmed by laboratory
measurements,16 is that the decay of the solvation cor-
relation function (Stokes shift correlation function, S(t))
involves two major components. The fast Gaussian com-
ponent is caused by ballistic motions of the solvent in
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FIG. 1: Relaxation times (a,c) and the Stokes shift dynamics
(b,d) of the structural glass-formers (a,b) and proteins (c,d).
The vertical lines marked “exp.” denote the temperature at
which the Stokes shift correlation function is recorded. The
dashed lines in (b,d) show the fast Gaussian decay of S(t).

the first solvation shell of the solute (quasi-localized vi-
brations in the case of a protein). The slow tail of S(t)
is related to collective α relaxation mostly caused by re-
laxation of orientations of molecular permanent dipoles
(dielectric relaxation) and quadrupoles.17 The notion of
α relaxation, that is the slowest relaxation on the micro-
scopic scale, is not commonly invoked in the discussion of
high-temperature solvation dynamics of small molecular
dyes,19 but becomes critical in building a conceptual ba-
sis for understanding the solvation dynamics of cofactors
assembled within the hydrated protein.20

Phenomenology developed for structural glass-
formers21 helps to formulate the problem we are dealing
with here. The typical temperature dependence of the
relaxation time of a polar molecular liquid is shown in
Figure 1a. A high-temperature liquid has two relaxation
times: reorientations of molecular permanent dipoles
resulting in slow α relaxation and fast βf relaxation
related to collective anharmonic cage rattling. Corre-
spondingly, the Stokes shift correlation function has
two components: fast Gaussian decay coupled to βf

molecular motions and a slow tail coupled to α motions.
This latter component is often connected to dielectric
relaxation of the homogeneous solvent.22 When the
liquid is supercooled, the α component, which often
becomes non-Arrhenius, separates from the slow β relax-
ation (βs) characterized by the Arrhenius temperature
dependence21 (Fig. 1a). If all the components of the
Stokes shift correlation function could be resolved at
that low temperature, three major parts, corresponding
to α, βs, and βf relaxation could have been seen. It
is this imaginary experiment, which is hard to realize
in molecular liquids,23 that bears a close connection to
charge-transfer dynamics in proteins.

For proteins, as well as for most polymer glass-formers,
α and β relaxation are well separated in the temper-
ature range of protein stability.20,24,25 In addition, the
secondary β relaxation is typically split into several com-
ponents with increasingly faster dynamics accompanied

FIG. 2: Schematic arrangement of cofactors in the bacte-
rial reaction center. P is the special pair, B and H are
monomeric bacteriochlorophylls and bacteriopheophytins, re-
spectively. Electron transfer in wild-type reaction centers oc-
curs almost exclusively along the L-branch of cofactors (sub-
script “L”), while the M-branch (subscript “M”) is mostly
inactive.

by smaller activation barriers (Figure 1c). The rugged
surface of the protein also complicates the dynamics, and
α relaxation is known to disappear from the response of
water in nano-confinement.26 The coupling of the trans-
ferred electron to different modes of the protein/water
solvent may vary, and it is a priori not clear which mode
will dominate the solvation dynamics. However, one can
clearly expect Stokes shift dynamics to show at least
three components including a Gaussian decay due to βf

modes, some subset of βs modes, and an α relaxation
(Figure 1d). The relative relaxation times and weights of
these modes in the overall Stokes shift correlation func-
tion are critical for the energetics of charge transfer as
we show below.

The geometric arrangement of cofactors in the mem-
brane protein of the reaction center has been consid-
ered in the literature mostly from the perspective of cal-
culating the probability of electron tunneling incorpo-
rated into the electron-transfer matrix element.7 Early
studies considered the possibility of direct charge sepa-
ration from the special pair (P) to bacteriopheophytin
(HL) of the L branch of monomeric chromophores via
a super-exchange mechanism involving nearby bacteri-
ochlorophyll (BL).

10,27 More recent studies12,28,29,30,31

have identified B−
L as an intermediate state in the se-

quence of electron hops,32 a slower process from P∗ to
BL followed by a faster transition from BL to HL. The
energy level of B−

L was placed between 331–450 cm−1

(refs 28,30) and 650–800 cm−1 cm−1 (ref 33) below the
energy level of the excited special pair P∗, favoring in
both cases sequential over superexchange transfer. In
the present study, we will restrict our attention to the
first of two hops limiting our calculations to the rate of
transition from P∗ to BL (Figure 2).
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The role of the structural arrangement of the special
pair in the energetics of primary charge separation has at-
tracted relatively little attention (see, however, Warshel’s
work34). The spectroscopy of the P→P∗ excitation and
of the primary pair cation radical have been intensely
studied,35,36 along with extensive modeling of the energy
transfer within the antenna complex and to the special
pair.37 The question we address here is somewhat dif-
ferent. Given that the special pair has evolved within
the reaction center, we wonder if its particular structural
arrangement makes any significant impact on the acti-
vation barrier of primary charge separation. Since the
sandwich of two bacteriochlorophylls making P is highly
conserved in bacterial and plant photosynthesis,5 it might
have some other role in the functionality of the reaction
center aside from capturing the excitation from the an-
tenna complex.

The motivation for posing this question is provided
by Stark experiments by Boxer and co-workers who
showed a dramatic increase of the polarizability of P
upon photoexcitation.38 In fact, the polarizability change
of about 103 Å3 upon photoexcitation38 places the spe-
cial pair among the most polarizable molecules known
(carotenoids, also present in the reaction center, make an-
other group of champions). This remarkable observation
is combined here with our previous studies of electron
transfer in polarizable donor-acceptor complexes,39,40,41

which showed that the change in polarizability accom-
panying charge transfer results in asymmetric, non-
parabolic free energy surfaces for electron transfer. De-
termining whether this polarization asymmetry can sig-
nificantly effect the activation barrier is one of the goals
of this study.

In summary, by combining extensive Molecular Dy-
namics (MD) simulations with formal modeling, we want
to establish the basic ingredients contributing to the ac-
tivation barrier of primary charge separation. The ques-
tions we address are the following: (1) What is the set
of primary nuclear modes (either protein or aqueous wa-
ter/protein interface) that promote transfer of an elec-
tron? (2) How to describe the activation events happen-
ing on such a short reaction time? In particular, we show
that non-ergodic chemical kinetics is required in this case
to replace the standard Marcus picture based on equilib-
rium distributions. (3) What is the effect of high polariz-
ability of the photoinduced special pair on the energetics
of the transition?

We address the questions posed above by incorporat-
ing the Stokes shift dynamics from MD simulations into a
formal theory which we describe first below. The results
of the calculations presented next are tested for consis-
tency against experimental data. We use our simulation
data obtained at different temperatures to compare the
calculated rates with the results of Fleming et al.1 In
addition, the recently published data by Wang et al.43

for the population decay of the photoexcited state of the
special pair in a number of mutants offer an opportunity
to use the dynamical electron transfer models44,45,46 to

FIG. 3: Reaction complex of Rhodobacter sphaeroides.42 The
protein (gray) is surrounded by the micelle of LDAO deter-
gent molecules (purple). The electron is transferred in se-
quence from the photoexcited special pair (P, gold) to bac-
teriochlorophyll (BL, red) followed by even faster transfer to
bacteriopheophytin (HL, green). In MD simulations, the re-
action complex is surrounded by 6 sodium ions, 30 NaCl pairs,
and 10,506 water molecules which are not shown here.

study the multiexponential population decay. These ex-
perimental results are also analyzed here by combining
the Stokes shift dynamics from MD simulations with a
formal model of non-ergodic chemical kinetics. The pic-
ture that has emerged from all this effort is summarized
in the discussion section of this paper.

II. BASICS OF THE FORMALISM

We approach the problem of calculating the rates of
charge separation by combining the input from MD sim-
ulations with analytical formalism. Simulations of the re-
action center of Rhodobacter sphaeroides42 were carried
out using Amber 8.0.47 We have followed the procedure
first suggested by Ceccarelli and Marchi48 in which the
reaction center is surrounded by the micelle of detergent
(lauryl dimethyl amino oxide, LDAO) molecules mimick-
ing the hydrophobic membrane, and also closely match-
ing the experimental setup49 for photochemical studies of
bacterial photosynthesis. The structure of the reaction
center surrounded by LDAO molecules is shown in Fig-
ure 3. The details of the simulation protocol are provided
in Appendix A and the charging scheme of the cofactors
and the protein/water solvent is outlined in Appendix B.

A. Energetics of Primary Charge Separation

Electron transfer is a tunneling event realized, in the
Born-Oppenheimer approximation, at the resonance of
the electronic donor and acceptor energies. The gap
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between the electronic energies of the donor and accep-
tor states, ∆E, makes the one-dimensional reaction co-
ordinate X = ∆E that incorporates the whole mani-
fold of possible nuclear modes affecting the electronic
transition.50 Because many nuclear motions affect the
donor and acceptor states in dense condensed media, the
fluctuations of the stochastic variable ∆E are often well
represented by the Gaussian statistics.51 Therefore, the
probability of reaching zero energy gap ∆E = 0, when
electron tunneling takes place, is given by the Gaussian
probability

P (∆E = 0) ∝ e−〈∆E〉2/2CX(0) (1)

Here, the variance CX(0) = 〈(δX)2〉, δX = ∆E − 〈∆E〉
is equal to the t = 0 value of the time self-correlation
function of the energy gap X(t) = ∆E(t)

CX(t) = 〈δX(t)δX(0)〉 (2)

and the brackets stand for an ensemble average.
If one multiplies the probability of reaching the res-

onance with the frequency ωe of electron tunneling be-
tween the donor and acceptor electronic levels, one ar-
rives at the Marcus-Levich equation for the electron
transfer rate52

kET = ωee
−〈∆E〉2/2CX(0) (3)

In the case of non-adiabatic electron transfer considered
here (weak electronic coupling between the donor and
acceptor), the electronic tunneling frequency is given in
terms of the electron transfer matrix element V by the
following equation:

ωe =
√

2π/CX(0)(V 2/~) (4)

Equation 3 is quite general and is limited only by the
assumption of Gaussian fluctuations of the energy gap.
In order to make it practical, one needs to connect the av-
erage energy gap 〈∆E〉 and the variance CX(0) to physi-
cal interactions present in the system made of the donor-
acceptor complex and a thermal bath of nuclear degrees
of freedom coupled to the transferred electron. Despite
the obvious complexity of the system, a generally applica-
ble separation of the average energy gap into three com-
ponents is possible: the gas-phase gap ∆Egas, the shift
by non-polar interaction potentials ∆Eind, and the shift
by Coulomb interactions between the permanent partial
charges of the solute and the solvent, ∆EC

〈∆E〉 = ∆Egas +∆Eind +∆EC (5)

The gas-phase energy gap ∆Egas is the difference be-
tween the ionization potential of the donor and the elec-
tron affinity of the acceptor in the gas phase. The
two other components represent the interaction with the
protein/water solvent and can thus be combined into a
solvent-induced (subscript “s”) shift

∆Es = ∆Eind +∆EC (6)

The separation of the average energy gap into a non-
polar and Coulomb part is in fact related to the sepa-
ration of time-scales first discussed in early work on po-
larons in solids by Pekar,53,54 Fröhlich,55 and Feynman.56

The fast electronic degrees of the solvent (which is com-
posed of protein, detergent, and water in our problem)
result in instantaneous equilibration of the transferred
electron by induction and dispersion (London) forces.
For our present application, the former is more signif-
icant (superscript “ind” in eq 5 and throughout below)
and we therefore explicitly consider this component. The
last term in eq 5, related to Coulomb interactions, fluc-
tuates due to slow molecular motions of molecular rota-
tions and translations. This term is often described in the
electron transfer literature by the coupling of the electric
field of the donor-acceptor complex to the inertial dipo-
lar polarization,54 which we consider after the induction
component.
The induction forces are produced by polarizing the

medium by the electric field of the donor-acceptor com-
plex. If atoms and/or molecules of the medium carry
polarizabilities αj , the induction energy is the sum of
polarization free energies of all such polarizable groups
located at positions rj . The induction shift of the aver-
age energy gap is then given by the change in the polar-
ization free energy caused by changing the electric field
of the donor-acceptor complex

∆Eind = −
〈

∑

j

(αj/2)
[

E2
02(rj)− E2

01(rj)
]

〉

(7)

This component of the energy gap is often not given ad-
equate attention in the electron transfer literature, even
though it can be quite significant57,58 as we show be-
low. The induction shift also depends on temperature for
constant-pressure experiments because of thermal expan-
sion, and this fact needs to be included in the modeling
of temperature-dependent reaction rates. Even though
the induction potential is established instantaneously by
induced electronic dipoles, the interaction energy is mod-
ulated by nuclear motions of the solvent (water and pro-
tein) producing a non-zero component in the Gaussian
distribution width (see below).
The Coulomb part of the donor-acceptor energy gap

has received the most attention over several decades of
the theory development, and we will briefly set up the
stage for our treatment of this part of the problem here.
The linear response approximation, either in terms of
the electrostatic interaction with the medium dipolar
polarization59 or in terms of partial atomic charges,60

has mostly been used as the basis for theory develop-
ment. In the former case, one considers the polarization
of the solvent by the electric field of the solute E01 in the
initial electron transfer state. This equilibrium polariza-
tion Peq(r) at point r within the solvent is connected
to the field E01(r

′) at point r′ by generally a nonlocal
response function χ(r, r′)60,61,62

Peq(r) = χ(r, r′) ∗E01(r
′) (8)
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where the asterisk denotes volume integration over the
variable r′ and tensor contraction over the Cartesian
components of the field with the corresponding compo-
nents of the 2-rank tensor χ.
Equation 8 for the solvent polarization induced by the

solute typically appears in theories of linear solvation in
homogeneous liquids. In contrast, the protein matrix it-
self and the protein/water interface are inhomogeneous
with a possibility of generating a polarization field P′

eq

unrelated to the electric field of the cofactors. This polar-
ization will create an additional inhomogeneous compo-
nent of the vertical shift ∆EC

inh that cannot be calculated
from the linear response approximation. The inertial (nu-
clear) polarization field P′

eq+Peq does not change on the
time-scale of electronic transition and creates a shift of
the donor-acceptor energy gap by the amount determined
by the change in electron’s electric field ∆E0 upon the
transition:

∆EC = −
(

P′
eq +Peq

)

∗∆E0 = ∆EC
inh −E01 ∗ χ ∗∆E0

(9)
In the original Marcus formulation,52 the average ver-

tical energy gap was separated into the Coulomb reorga-
nization energy λC and the Coulomb part of the Gibbs
energy of the reaction, ∆GC. By using the identity
E01 = Ē0 − ∆E0/2, Ē0 = (E01 + E02)/2 in eq 9 one
gets

∆EC = λC +∆GC (10)

where

λC = (1/2)∆E0 ∗ χ ∗∆E0 (11)

and

∆GC = ∆EC
inh − Ē0 ∗ χ ∗∆E0 (12)

The Coulomb part of the Gibbs energy then combines
with the gas-phase gap and the induction shift to make
the overall reaction Gibbs energy

∆G = ∆Egas +∆Eind +∆GC (13)

Combined together, eqs 5, 10, and 13 lead to the stan-
dard Marcus relation for the vertical average energy gap

〈∆E〉 = ∆G+ λC (14)

The separation of the average energy gap into the equi-
librium Gibbs energy and reorganization energy compo-
nents makes sense when the former can be measured sep-
arately. In spectroscopy, the average gap is given by the
maximum of the corresponding spectroscopic band (or,
more precisely, by the first spectral moment) and this
separation is not necessary. Likewise, the average energy
gap is directly accessible from MD simulations, so the for-
mulation in terms of the average energy gap is also more
convenient from the simulation perspective. Even more
importantly, the Gibbs energy of the reaction loses its

direct connection to equilibrium thermodynamics in non-
ergodic reaction kinetics, which we formulate and apply
to the calculation of the rates below. In this framework,
the formulation of electron transfer thermodynamics in
terms of the first and second cumulants of the donor-
acceptor energy gap is the only formal approach to the
problem available at the moment.
The Gaussian width, CX(0) in eq 3, generally needs a

separate determination. It is calculated as the variance of
the sum of all solute-solvent interaction potentials affect-
ing the energy of the transferred electron. The problem is
simplified for the Coulomb interactions. These are long-
ranged and are typically well described by the linear re-
sponse approximation. Therefore, the high-temperature
limit of the fluctuation dissipation theorem63 applies to
the Coulomb part on nuclear fluctuations with the result-
ing factorization of CX(0) into temperature and reorga-
nization energy52,64

CX(0) = 2kBTλs (15)

A significant simplification of this route is achieved
through the fact that the variance is determined in terms
of the same response function as the one used for the
Coulomb part of the average energy gap (eq 9), thus re-
ducing the number of independent response functions re-
quired by the theory.
This procedure does not apply to short-range induction

forces which do not follow the macroscopic fluctuation-
dissipation theorem; the calculation of their first and sec-
ond cumulants requires microscopic response functions.57

The main consequence is that the induction compo-
nent does not factorize into temperature and a weakly
temperature-dependent energy parameter. The result is
a generally non-Arrhenius form of the rate constant50 in
eq 3 in which the variance can be written as

CX(0) ≃ 2kBTλ
C + C ind(0) (16)

Since the Coulomb and induction interaction sum up in
the energy gap, a cross term needs to be taken into ac-
count, and we have included it into C ind(0) as follows

C ind(0) = 〈(δEind)2〉+ 2〈δECδEind〉 (17)

Despite these complications which take away the solid
foundation behind factoring the variance into the temper-
ature and energy components,63,64 we will follow the es-
tablished tradition and define the solvent reorganization
energy as as the sum of induction and Coulomb terms
(cf. to eq 6)

λs = λind + λC (18)

where

λind = C ind(0)/(2kBT ) (19)

The probability of electron transfer can be affected
by intramolecular vibrations of the solute.11 These can
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be added to the formalism outlined here by summing
up probabilities of transitions between separate vibronic
channels. These transitions are known to significantly
affect the transition probability in the inverted region,
〈∆E〉 < 0, but can be neglected for transitions in the
normal region, 〈∆E〉 > 0, considered here. An extension
to the former case is well developed in the literature11

and does not pose fundamental difficulties.

B. Stokes shift dynamics

The characteristic timescales of nuclear fluctuations af-
fecting charge transfer can be extracted from the time
correlation function in eq 2, or from its normalized value
known as the Stokes shift correlation function

S(t) = CX(t)/CX(0) (20)

As mentioned above, the typical shape of S(t) in com-
plex condensed media includes a fast Gaussian compo-
nent and a multi-exponential (or stretched-exponential)
tail. A two-exponential tail is used to fit our simulation
results with CX(t) in the form

CX(t) = C ind(t) + CC(t) (21)

where

CC(t) = 2kBT
[

λC
Ge

−(t/τG)2 + λC
1 e

−t/τ1 + λC
2 e

−t/τ2
]

(22)
Here, τG is the relaxation time of the Gaussian decay
and τ1 and τ2 are two exponential relaxation times. In
addition, λG and λi are the corresponding reorganization
energy components such that λC = λC

G + λC
1 + λC

2 .

C. Non-ergodic activation kinetics

The arguments presented in sec IIA are based on
equilibrium statistical mechanics representing the com-
ponents of the activation barrier as equilibrium (free)
energies. This formulation in fact assumes a certain
separation of time-scales, that is the time of the reac-
tion τET = k−1

ET must be much longer than all relaxation
times (τG, τi, etc.) of the nuclear modes coupled to the
transferred electron. This assumption certainly breaks
down for our problem combining the extremely short
time of natural primary charge separation (ca. 3 ps) with
the disperse relaxation spectrum of the protein/water
solvent.13,30,65 What we face here is the obvious case of
ergodicity breaking66 of the nuclear fluctuations involved
in the reaction activation, which raises the question of
how to approach the calculation of the reaction rates.
The Stokes shift correlation function provides a con-

sistent approach to formulate the kinetics of non-ergodic
electron transfer. We first note that the equilibrium lin-
ear response function χ, introduced in Sec. II A in the
direct space domain, can be extended to the time domain

to cover the time correlation functions of the energy gap
fluctuations. The equilibrium ensemble average produc-
ing the solvent response component of the average energy
gap (cf. to eq 9) can then be given as a frequency integral
of the Fourier transform χ(ω)

∆EC
r = −2

∫ ∞

0

dωE01 ∗ χ(ω) ∗∆E (23)

This representation offers a systematic approach to cal-
culating the non-ergodic solvent response. The integral
in eq 23 is over all possible frequencies of nuclear mo-
tions, implying that all of them contribute to the aver-
age. In fact, the time-scale of the reaction τET limits
the frequency spectrum only by those frequencies that
are higher than the rate of the reaction kET. The non-
ergodic energy gap thus becomes

∆EC
r (kET) = −2

∫ ∞

kET

dωE01 ∗ χ(ω) ∗∆E0 (24)

Along the same lines, the non-ergodic reorganization en-
ergy can be defined by using the same step-wise frequency
filter:

λC(kET) =

∫ ∞

kET

dω∆E0 ∗ χ(ω) ∗∆E0 (25)

An alternative representation is through the Fourier
transform of the Stokes shift correlation function

CC
X(ω) =

∫ ∞

−∞

eiωtCC
X(t)dt/(2π) (26)

as follows67

λC(kET) = β

∫ ∞

kET

CC
X(ω)dω (27)

where β = 1/(kBT ). Equations 24–27 suggest that
λC(kET) can be obtained from the Stokes shift correlation
function calculated from MD trajectories while a formal
theory is required for χ(ω) to determine ∆EC

r (kET).
The notion that the parameters entering the activation

barrier become functions of the electron transfer rate cre-
ates the necessity to consider the calculation of the rate
constant as a self-consistent problem given as the solution
of the following equation:

kET = ωe(kET) exp
[

−〈∆E(kET)〉2/2CX(0, kET)
]

(28)

Here, the rate-dependent energy gap can be re-written
based on eq 24 as

〈∆E(kET)〉 = ∆Egas +∆Eind +∆EC
inh + fC

ne(kET)∆EC
r

(29)
where, based on our simulations discussed below, we as-
sume that the induction component of the shift does not
involve slow relaxation and only Coulomb solvation gets
cut off by breaking ergodicity. Accordingly, the Gaussian
width in eq 28 takes the form

CX(0, kET) = C ind(0) + 2kBTλ
C(kET) (30)
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where

λC(kET) = fλ
ne(kET)λ

C (31)

In eqs 29 and 31, we have introduced the parameters of
non-ergodicity of nuclear fluctuations contributing to the
vertical energy gap, fC

ne, and to the reorganization energy,
fλ
ne. The parameter fλ

ne can be readily calculated from
eqs 21, 22, and 27:

fλ
ne = λG/λ

C + (2/π)
∑

i=1,2

(λi/λ
C) cot−1 (kETτi) (32)

The procedure outlined above can be used to construct
the free energy surfaces of electron transfer. The widely
accepted definition of the free energy surfaces for elec-
tron transfer follows the general procedure of defining the
Landau functional63 in which the hypersurface X = ∆E
generates the incomplete partition function

e−βG(X) ∝
∫

δ (∆E −X) e−βHdΓ (33)

In this expression, ∆E depends on all nuclear modes Qn,
n = 1, . . . ,M in the system. In addition, H is the system
Hamiltonian in the initial state of the electron-transfer
system and dΓ is the element of phase space.
In applications to processes happening on short time

scales, one needs to generalize eq 33 to exclude a subset
of frequencies not contributing to the process:

e−βG(kET,X) ∝
∫

δ (∆E −X) e−βH
∏

n,ω<kET

δ[Qn(ω)]dΓ

(34)
In this equation, the product of delta functions eliminates
the low-frequency modes from the partition function.

D. Polarizability of the special pair

There is a significant body of experimental68,69,70,71

and computational35,72,73,74,75,76 evidence of a strong
mixing of covalent, (PL-PM )∗, and charge-transfer, (P+

M -

P−
L )

∗, states within the photoexcited special pair, where
PM and PL are the M and L subunits of the special
pair (Figures 2 and 3). Although the average amount of
charge transfer between two subunits is small,73 about
0.1 of the electronic charge in the gas phase and 0.2
in the reaction center, the fluctuations of the elec-
trostatic potential of the protein/water solvent create
significant fluctuations of the extent of charge trans-
fer. Correspondingly, the fluctuating population of
the charge-transfer state (P+

M -P−
L)

∗ creates fluctuating
charges ∆zj = nCT∆Zj at the atomic sites of the special
pair (j runs over the atoms of P). In this representation,
∆Zj are the difference of atomic charges of the special
pair between the ionized excited state (P+

M -P−
L)

∗ and the
covalent state (PL-PM )∗, and nCT is the population of
the charge-transfer state. Physically, this redistribution

of charge in response to an external electrostatic field im-
plies that the special pair is polarizable with the instanta-
neous induced dipole moment equal to pCT = nCT∆µCT.
Here, ∆µCT is the dipole moment between the ionized
and neutral states of the special pair. The importance of
the induced dipole moment for electron transfer is that
the instantaneous electron transfer dipole becomes modi-
fied from the dipole µET created by the set of permanent
charges ∆qk (k runs over all atoms of the cofactors in-
volved in electron transfer) to a new fluctuating dipole
moment µET + pCT. Since the solvent reorganization
energy is proportional to the average squared dipole mo-
ment

λC ∝
〈

(µET + pCT)
2
〉

(35)

the appearance of the induced dipole can potentially
modify the energetics of electron transfer.39,40,41

In order to model the effect of polarizability of the
special pair on the statistics of the donor-acceptor energy
gap, we have adopted the following simulation algorithm.
The charges zj of the primary pair are re-calculated at
each fifth MD step according to the equation

zj = zPj + nCT∆Zj (36)

where zPj are the charges of two decoupled bacteri-
ochlorophylls obtained from our DFT calculations (Ap-
pendix B and supporting information). The extent of
charge delocalization nCT is calculated by diagonaliz-
ing, at each fifth step of the MD trajectory, the two-
state quantum Hamiltonian characterized by the elec-
tronic coupling J and the instantaneous energy gap be-
tween two states

∆ǫ = ∆ǫgas +∆ǫind + (1/2)
∑

j

∆Zjφj (37)

Here, ∆ǫgas is the gas-phase energy separation between
the neutral and ionized states of P and φj is the electro-
static potential of the surrounding protein/water solvent
at the position of atomic charge j. ∆ǫind in eq 37 is
the induction shift of the energy gap and the parameters
∆ǫgas and J are tabulated in Appendix B.

E. Polarizable special pair and free energy surfaces

of electron transfer

The description of Coulomb solvation presented in
sec IIA change significantly when the special pair is
polarizable.39,40 The main modification here is that the
atomic charges and hence the electric field of the co-
factors become a function of the solvent polarization P

through the extent of charge delocalization nCT. The
electric field E01 changes from the value commonly cal-
culated from the vacuum charge distribution to E01[P]:

E01 → E01[P] (38)
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A general solution for the free energies of electron trans-
fer in this case has not been found so far, although an
analytical theory can be formulated in the case of dipole
solvation.77 Alternatively, the field E01[P] can be linearly
expanded in the solvent polarization P around its equi-
librium value

E01[P] = E0[Peq +P′
eq] + F · δP (39)

where F is a 2-rank tensor and δP = P−Peq −P′
eq.

When the form of the field given by eq 39 is substituted
into the standard Hamiltonian52 of the solute linearly
coupled to the Gaussian field P, one gets

H = −E01[Peq +P′
eq] ∗P+ (1/2)δP ∗ χ−1

mod ∗ δP (40)

where χ
−1
mod = χ

−1 − 2F is the new, modified linear re-
sponse function of the Gaussian polarization field renor-
malized by the solute polarizability. Since the polariz-
ability tensor F is generally different in the initial and
final electronic states, the donor-acceptor energy gap be-
comes a bilinear function of the Gaussian field P in
contrast to the linear function used to derive the Mar-
cus parabolas. The main consequence of that change
is that the statistics of energy gap fluctuations become
non-Gaussian. The free energy surface loses its parabolic
shape predicted by Marcus theory and can instead be
represented by the analytical results of the Q-model:78

G(X) = α

(

√

|〈∆E〉 − αλC −X | −
√
αλC

)2

(41)

Here, α > 0 is the non-parabolicity parameter describing
the deviation of the free energy surface from the parabolic
shape. The limit α → ∞ recovers the Marcus barrier
thermodynamics.

III. RESULTS

We believe that this paper reports the most extensive
MD simulations on the bacterial reaction center following
previous simulation efforts in this field.27,48,65,79,80,81,82

The overall length of 118 ns of MD trajectories, of which
100 ns were used for the production analysis, required
39.8 CPU years. All simulations were done in parallel
using 128 CPUs of ASU’s HPC facility. The analysis of
the simulations was performed by a parallel code devel-
oped for this project that reads directly binary AMBER
files. The analysis was run in parallel on 10 Opteron
CPUs and required overall 4.8 years of CPU time.
Two sets of simulations have been done. The first set,

which we will label S1, was performed at six different
temperatures. It employed the standard protocol of MD
force fields with fixed atomic charges. The equilibrium
MD trajectories were used to calculate the statistics of
the donor-acceptor energy gap and the Stokes shift cor-
relation functions. In this calculation, in addition to
Coulomb interactions, induction solute-solvent interac-
tions were computed. The atomic polarizabilities were

taken from a modified Thole parametrization.83 The in-
duction potential was not a part of the simulation algo-
rithm, thus assuming that the exploration of the phase
space of the nuclear motions can be accomplished with
the standard force fields. Since these force fields effec-
tively incorporate polarizability in terms of permanent
charges, in order to avoid double counting, the charges
of the solvent (protein and water) were multiplied by 0.89
in analyzing the data, following the convention adopted
in the literature.82

Six trajectories of S1 protocol were produced for the
initial state of the reaction complex, (P–BL)

∗, at differ-
ent temperatures. The atomic partial charges calculated
by us at the DFT level (Appendix B) were supplemented
by the force-field parameters of bacteriochlorophyll de-
veloped by Marchi and co-workers.84 The atomic charges
of the ground-state bacteriochlorophyll were used for the
exited state of the primary pair assuming that photoex-
citation does not greatly alter the charge distribution.65

One simulation trajectory at 300 K was produced for
the charge-separated state P+–B−

L corresponding to the
first hop of the electron in the sequential mechanism. For
this simulation, the positive charge of P+ was distributed
among the two cofactors of the special pair as described
in Appendix B and the charge distribution of the bac-
teriochlorophyll anion was calculated at the DFT level
(supporting information).
The second set of simulations, labeled as S2, required

changing the standard MD protocol (see Appendix B). In
these simulations, quantum polarizability of the special
pair was accounted for by diagonalizing the 2×2 Hamil-
tonian matrix of the charge-transfer state between the
two parts of P at each fifth step of the MD trajectory,
a procedure known in the literature as the empirical va-
lence bond approach.85,86 The Hamiltonian diagonaliza-
tion allows one to calculate the extent of charge transfer
between two bacteriochlorophylls in P and dynamically
adjust charges of the special pair. This simulation pro-
tocol thus incorporates an extremely high polarizability
of P∗ revealed by Stark spectroscopy measurements of
Boxer and co-workers.38,68

A. Energetics

Two energy parameters are of main importance within
the Gaussian picture of electron transfer activation (Mar-
cus model). These are the average donor-acceptor energy
gap and the energy gap variance (eq 3). These parame-
ters, obtained from MD simulations at different temper-
atures, are listed in Tables I and II. The complete set
of first cumulants from both S1 and S2 simulations is re-
ported in Table I. The S2 entry in Table II is limited
to 300 K since the second cumulants at other tempera-
tures did not converge on the time-scale of the simulation
trajectories.
Since we are dealing here with a heterogeneous solvent

composed of a protein matrix and aqueous environment,
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TABLE I: Components of the average energy gap for primary charge separation (all energies are in eV).

Protocol T/K ∆EC
w ∆EC

prot ∆EC ∆Eind
w ∆Eind

prot ∆Eind ∆Es

S1 77 0.170 -0.500 -0.330 -0.058 -1.234 -1.292 -1.623
200 0.144 -0.728 -0.584 -0.057 -1.199 -1.256 -1.840
250 0.382 -0.749 -0.367 -0.054 -1.183 -1.237 -1.604
300a 0.205 -0.678 -0.473 -0.055 -1.164 -1.219 -1.691
300b -0.365 -1.278 -1.643 -0.082 -1.071 -1.153 -2.796
350 0.440 -0.856 -0.416 -0.050 -1.094 -1.144 -1.559
400 0.093 -0.330 -0.237 -0.075 -0.853 -0.928 -1.164

S2 250 0.399 -0.502 -0.103 -0.048 -1.042 -1.090 -1.193
275 0.404 -0.535 -0.131 -0.051 -1.065 -1.116 -1.247
300c 0.310 -0.632 -0.323 -0.052 -1.076 -1.128 -1.451
325c 0.310 -0.168 0.141 -0.020 -0.836 -0.857 -0.716
350c 0.347 -0.594 -0.247 -0.053 -0.987 -1.041 -1.287

aObtained from 10 ns long MD trajectories, the unmarked data
refer to 5 ns of simulations.
bData for the final charge transfer state P+–B−

L
, 5 ns trajectory.

cObtained from 15 ns long MD trajectories.

TABLE II: Reorganization energies calculated from fluctuations of the energy gap (eq 15). All energies are in eV.

Protocol T/K λind
w λind

prot λind λC
w λC

prot λC λw λprot λs
a

S1 77 0.019 0.065 0.070 0.187 0.168 0.351 0.191 0.245 0.421
200 0.001 0.057 0.062 0.756 0.182 0.845 0.756 0.251 0.903
250 0.016 0.076 0.081 1.634 0.341 1.938 1.639 0.419 1.955
300b 0.047 0.112 0.119 1.136 0.375 1.564 1.124 0.466 1.598
300c 0.047 0.146 0.149 1.393 0.441 1.542 1.379 0.593 1.692
350 0.110 0.187 0.191 0.948 0.644 1.508 0.944 0.853 1.508
400 0.139 0.249 0.275 0.767 0.567 1.010 0.866 0.797 1.335

S2 300 0.481 0.682 0.697 1.439 0.735 1.839 1.454 1.385 2.513

aλind + λC deviates slightly from λs because of numerical uncer-
tainties of averaging.
bObtained from 10 ns long MD trajectories, the unmarked data

refer to 5 ns of simulations.
c5 ns data for the final charge transfer state P+–B−

L
.

the separation of these two first cumulants of the energy
gap into the water and protein contributions provides
mechanistic insights into the factors influencing electron
transfer activation. In addition, we split the relevant en-
ergies into contributions from non-polar and Coulomb
interactions. Finally, the introduction of polarizability
(charge fluctuations) of the special pair shifts relative
weights of each component in the activation barrier and,
more importantly, results in significant deviations from
the Gaussian picture of Marcus parabolas.

Figure 4 reports the distribution of Coulomb and in-
duction components of the energy gap from simulations
of both the non-polarizable and polarizable special pair.
The Coulomb interactions have Gaussian statistics where
the width is consistent with the reorganization energies
listed in Table II. The average shifts arising from water
and the protein have opposite signs. Therefore, the po-
larization of water by the protein matrix contributes to
the destabilizing of the charge-transfer state, as was also
observed by Parson et al.65 On the contrary, the protein
matrix makes the dominant contribution into stabilizing
the charge-separated state. The induction shift of the
average energy gap, arising primarily from the protein

matrix (Ind(prot) in Figure 4), is about twice larger than
the Coulomb shift which largely cancels out between its
protein and water contributions (Table I). On the con-
trary, the width of the distribution of induction energies
is small relative to the Coulomb interactions for non-
polarizable (S1) simulations (in accord with assessment
of analytical theories57), but grows significantly for the
polarizable (S2) simulation protocol (Table II).
The splitting of the total self-correlation function

CX(0) into the individual protein (subscript “prot”) and
water (subscript “w”) components requires an estimate
of the cross-correlation term λw,prot between the water
and protein interaction potentials:

λs = λprot + λw + λprot,w (42)

This latter part turns out to be significantly smaller than
the individual protein and water components, as can be
inferred from the last three columns in Table II by com-
paring the total solvent reorganization energy λs with
the sum of the two components, λprot + λw.
Notwithstanding such little attention paid in the

electron-transfer literature to non-polar interactions, the
induction shift is the main part of the solvent effect on
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FIG. 4: Normalized distributions of components of the donor-
acceptor energy gap in non-polarizable (S1, solid lines) and
polarizable (S2, dashed lines) simulation protocols (T = 300
K). Marked in the plot are the Coulomb interaction due to
the protein (C(prot)) and water (C(w)) and the induction
interaction (Ind(prot) for the protein and Ind(w) for water).
S1 and S2 mark the distributions of the total energy gap for
the non-polarizable (S1) and polarizable (S2) special pair.

the average energy gap of charge separation. Its value
can be estimated from some simple arguments. If one
assumes that atomic polarizabilities are distributed with
a constant density around the donor and acceptor, one
arrives at a simple expression58

∆Eind
prot = −3e2

n2
prot − 1

n2
prot + 2

(

1

2RD
+

1

2RA
− 1

RDA

)

(43)

Here, RD and RA are the radii of the donor and acceptor
and RDA is the distance between them. In addition, nprot

is the refractive index of the protein matrix and e is the
elementary charge. For the average refractive index of
the reaction center87 nprot = 1.473 and the radius of

the bacteriochlorophyll unit RD = RA = 5.6 Å obtained
from its vdW volume one gets ∆Eind

prot = −1.09 eV at the

crystallographic distance RDA = 11.3 Å. This number
compares favorably with the induction shift of ∆Eind

prot =
−1.16 eV from MD simulations at T = 300 K (Table I,
S1 protocol).
The positive slope of the induction shift of the average

energy gap is caused by the temperature expansion of
the protein. Based on the data shown in Table I for S1
simulation protocol, the logarithmic derivative of the in-
duction shift with temperature, d ln∆Eind/dT , is within
the limits (4 − 8) × 10−4 K−1. According to eq 43 this
derivative should be equal to thermal expansivity of the
protein (Clausius-Mossotti equation). Indeed, the loga-
rithmic slope of the induction shift agrees reasonably well
with the reported88 expansion coefficients of proteins of
the order of 8× 10−4 K−1.
Several of the MD simulation results reported here

turned out to be quite surprising. Among the unex-
pected findings are quite large values of the solvent (pro-
tein and water) reorganization energies, contrasting the
commonly low values (ca. 0.1–0.2 eV) circulating in the
literature.10,65,80,82,89 In particular, water is far from be-
ing screened by the protein90 making the main portion

FIG. 5: Components of the solvent reorganization energy
from water and protein from MD simulations vs the obser-
vation time τobs. Points refer to MD data (S2 protocol, 300
K) and the dotted lines indicate the fits to eq 44. The in-
set shows the initial portion of the plot; the relaxation times
used to fit the MD results to eq 44 are: τR = 218 ps (total),
τR = 390 ps (protein), and τR = 764 ps (water).

of the energy gap variance in the S1 protocol, and be-
ing surpassed by the protein in the S2 protocol. In fact,
the values of water reorganization energy found here are
more typical of small redox couples in aqueous solution91

than of the often anticipated hydrophobic screening by
the protein matrix.
What is different in our simulations compared to previ-

ously reported simulation data65,80,82 is the length of the
simulation trajectory which has allowed us to push the
numbers for the reorganization energies closer to their
thermodynamic limit. Indeed, as is seen in Figure 5, the
reorganization energy as a function of the length of the
simulation trajectory (observation time τobs) levels off
by the end of the 5–10 ns production run. However, this
long-time reorganization energy is not relevant for the
short-time charge-separation dynamics since a significant
subset of nuclear modes gets dynamically arrested on the
picosecond time-scale at which the reorganization energy
as a function of τobs starts to sharply decline (Figure 5).
The dependence of the total reorganization energy and
its components on the observation window can be fitted
to a one component Debye equation (cf. to eq 32)

λ(τobs) ∝ cot−1(τR/τobs) (44)

with the effective relaxation time τR. The fits shown by
dotted lines in Figure 5 indicate that the system starts
to lose ergodicity on the time-scale of several hundred
picoseconds.
The data in Figure 5 have been generated according

to the following procedure. First, a trajectory of indi-
vidual protein/solvent vertical energies is created from
the sum of their respective Coulomb and induction com-
ponents. Second, a smaller trajectory window of length
τobs is cut from the full MD trajectory. Third, the en-
ergy gap variance is calculated on this smaller observa-
tion window which is then moved along the entire tra-
jectory. Each time the window is shifted, the variance is
calculated with the average energy gap set to its average
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FIG. 6: Protein (a) and solvent (b) reorganization energies
from MD simulations as functions of the observation time
τobs and temperature. The closed square indicates the result
of ref 65 obtained on a 40 ps observation window and the
closed circle refers to the 20 ps window used in ref 80.

on that particular window. The individual variances are
then averaged among the results from each sliding win-
dow, and the average reorganization energy is reported
as the λ(τobs) in Figure 5.

Reorganization energies calculated from this algorithm
are plotted vs temperature in Figure 6. As in Figure 5,
shortening the observation window lowers the reorgani-
zation energy. On the 4 ps observation window, most of
the multi-exponential Stokes shift relaxation is dynam-
ically arrested (see below) and only ballistic Gaussian
relaxation from the Coulomb interactions and the mod-
ulation of induction interactions by density fluctuations
contribute to the reorganization energy. For this short
observation time, the reorganization energy falls in the
range of values commonly reported from fitting the ex-
perimental reaction rates.10,89 In particular, our results
from 50 ps observation window are consistent with the
previous report by Parson et al.65 using 40 ps of the sim-
ulation trajectory (for Rp. viridis), while the result from
20 ps simulations from Treutlein et al.80 is slightly below
that value (closed points in Figure 6b). We do not expect
a close agreement here since our algorithm of sliding win-
dow generally gives rise to higher reorganization energies
than a single observation.

The reorganization energy from the protein is an in-
creasing function of temperature for all observation win-
dows (Figure 6a). On the contrary, for water reorga-
nization, the negative temperature slope expected from
equilibrium statistical mechanics92 is reverted by non-
ergodicity to a positive one (Figure 6b). This effect is
caused by a temperature-depending unfreezing of the nu-
clear modes when relaxation becomes faster with increas-

100 200 300 400
T/K
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1

2

3

4

5

FIG. 7: Induction (squares) and total protein (diamonds) re-
organization energies from the present MD simulations and
experimental mean square displacements of hydrogens of bac-
teriorhodopsin scaled with the inverse temperature, 〈(δx)2〉/T
(circles). The experimental data were obtained by neutron
scattering.94 All parameters have been normalized to their
corresponding values at 200 K.

ing temperature. The downward turnover of λ(T ) for
the 1 ns observation window (upper curve in Figure 6b)
marks the return of the system to equilibrium statistics
with the negative slope of λ(T ) also seen in our previous
simulations of a small solute in SPC/E water.93

The opposite temperature dependence of the protein
and water reorganization energies at long observation
windows points to a distinctly different character of the
corresponding nuclear modes. While water molecules
alter the donor-acceptor energy gap mostly by libra-
tional/rotational motions typical of polar liquids, the
protein nuclear modes are predominantly vibrational.
The temperature dependence of λprot seems to correlate
well with the temperature dependence of atomic displace-
ments of the protein matrix as is illustrated in Figure 7
where we show the better converged induction reorgani-
zation energy along with the total protein reorganization
energy. The temperature change of these reorganization
energies is compared with mean square displacements of
hydrogens in bacteriorhodopsin obtained from inelastic
neutron scattering.94

It is by now well established that protein vibrations
start to deviate from the straight line of harmonic mo-
tions at the transition temperature of about Tr ≃ 200−
220 K marking the rise of anharmonic motions (including
side-chain rotations).20,94,95 Therefore, the mean-square
displacement scaled with inverse temperature, 〈(δx)2〉/T ,
is a flat function at low temperatures starting to rise
above the transition temperature Tr. The same trend is
seen for the total protein reorganization energy and its in-
duction component, which both turn to a sharp increase
at about the same temperature. This comparison implies
that the relatively large values of protein reorganization
energy obtained in our simulations at room temperature
can be traced back to highly anharmonic motions of the
protein matrix.
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FIG. 8: Distribution of the population number of the ionized
state of the special pair along the simulation trajectory at dif-
ferent temperatures. The length of the simulation trajectory
varies from 5 ns at 77 K to 15 ns at 300, 325, and 350 K.

B. Polarizable special pair

We need to emphasize here that our modeling of the
polarizability of the special pair carries qualitative signif-
icance only. In addition to the obvious limitations of the
two-state model, the modeling of the temperature depen-
dence of the special pair polarizability is not adequate.
In our current simulations, the temperature dependence
of the average population of the ionized, charge-transfer
state of the special pair, nCT(T ), originates from the tem-
perature dependence of the diabatic diagonal energy gap
(eq 37). This component of the two-state Hamiltonian in-
creases with growing temperature, in general agreement
with the idea that a polar environment should become
effectively less polar with increasing temperature. There-
fore, as is illustrated in Figure 8, the special pair becomes
effectively more localized at higher temperatures because
the average energy splitting between the two state grows
with increasing temperature. The broad distribution of
nCT is a signature of the strong vibronic coupling of the
charge-transfer state.74 What effectively happens due to
strong temperature dependence of the average popula-
tion is that the polarizability of the special pair is about
400 Å3 at T = 300 K increasing up to 1800 Å3 at 77
K. Given the experimental temperature variation of the
absorption band of the special pair96 and the results of
Stark spectroscopy at 77 K,38 the former values appears
to be more realistic than the latter.

The increase of localization of the special pair in
its neutral (PM -PL)

∗ state results in a blue shift of
the absorption spectrum in general agreement with
experiment.96,97 However, the slope of this temperature
dependence derived from the data shown in Figure 8 ap-
pears to be too large. In vibronic models of the tem-
perature effect on the special pair absorption this ef-
fect is modeled by temperature-dependent population
of vibronic modes coupled to the dimer charge-transfer
state.76,98 This implies the temperature shift of the di-
abatic diagonal energy gap. Since this property is de-
termined by the protein/water electrostatic potential in

our simulations, a possible way to off-set a too strong
temperature dependence of absorption frequency is to in-
troduce a temperature-dependent off-diagonal coupling J
(Appendix B).75 Low frequency vibrations of the special
dimer in the 90–160 cm−1 region99 might contribute to
that temperature dependence. It seems that the model
needs to be modified to reproduce the temperature vari-
ation of the absorption spectrum of the special pair. The
current simulations in S2 protocol are therefore not ca-
pable to properly address the issue of the temperature
dependence of the rate. However, we still believe that
our results provide valuable insights into how the param-
eters of the model change once the polarizability is turned
on. We therefore report the results of simulations here
with the warning that the parameter magnitudes might
be modified with the refinement of the model. We will
also limit our analysis of the free energy surfaces of elec-
tron transfer to 300 K at which the polarizability seems
to be more realistic. What this value at room tempera-
ture should be is not entirely clear since the Stark data
were reported at 77 K68 (see Appendix B).

C. Free energy surfaces

A general solution for the non-ergodic free energy sur-
face defined by eq 34 is still missing. The current calcu-
lations and analysis of MD data are therefore limited to
the phenomenological approach outlined in sec II C where
a step-wise frequency filter was introduced into the fre-
quency linear response functions. Computer simulations
and comparison to optical experiments in glass-forming
liquids support this approach50 and one therefore can
ask what would be the free energy surface G(kET, X) on
the time-scale of primary charge separation τET = k−1

ET
compared to the thermodynamic surface G(X).
The thermodynamic free energy surface is of course

not available to us since sampling is always an issue with
simulations. However, leveling off of the reorganization
energies on the 10–15 ns trajectory seen in Figure 5 al-
lows us to hope that, except for the slowest modes re-
sponsible for the conformational mobility of the protein,
the phase space relevant to activating charge separation
was adequately sampled. The free energy surfaces for
non-polarizable (S1) simulations obtained from the 10
ns trajectory for the initial (P–BL)

∗ state and from the
5 ns trajectory for the final (P+−B−

L )
∗ state are shown

in Figure 9. The results of polarizable (S2) simulations
are collected in Figure 10. Our simulations allow us to
sample only the total interaction between the cofactors
and the protein/water solvent (eq 6) and therefore the
gas-phase energy gap is missing from the overall energy
gap X . This component of the energy gap was obtained
from fitting the calculated rate constants at 300 K to
the experimental data by Fleming et al1 and Wang et

al43 (see below). The gas-phase gap obtained from the
fit ∆Egas = 1.86 eV was used to horizontally shift G(X)
obtained from simulations resulting in the average energy
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FIG. 9: Free energy surfaces of primary charge separation
obtained from MD simulations of reaction center with non-
polarizable (constant charges, S1) special pair. The free en-
ergy surfaces βG(X) = − lnP (X) have been obtained from
the normalized distributions of the total energy gap X from
MD simulations (points) in the initial charge-transfer state,
P–BL (10 ns trajectory), and the final state, P+–B−

L
(5 ns

trajectory). The pair of curves marked with 0.21 are the non-
ergodic free energy surfaces calculated by using fλ

ne = 0.21
value of the non-ergodicity parameter following from the fit
of the theoretical rate to experiment (T = 300 K). The ver-
tical separation of the initial and final free energy curves is
+97 cm−1. The vertical separation of −450 cm−1 reported by
Zinth and co-workers28 is obtained when fλ

ne = 0.6 (marked
in the plot) is used in the calculation of the final free en-
ergy curve. The vertical separation between “equilibrium”
curves is −1100 cm−1. The dash-dotted lines in the plot are
fits to Marcus parabolas yielding equal reorganization ener-
gies λs ≃ 1.6 eV consistent with direct calculations of second
energy gap cumulants in Table II. The bold dashed line in-
dicates the free energy obtained by solving the self-consistent
non-ergodic equation for the rate (eq 28) by varying the aver-
age energy gap (see the text). The parameters are those used
to calculate the charge-separation rate in Figure 14.

gap of 〈∆E〉 = 0.169 eV. This number, which is equal to
the energetic separation of the free energy minimum from
the point of activationless electron transfer, is consistent
with the experimental value of 0.127–0.147 eV (from mu-
tagenesis data) which separates the wild type reaction
center from the top of the Marcus inverted parabola.89

Our result is also close to 〈∆E〉 = 0.150 eV reported
by Wang et al43 from fitting experimental data to the
diffusion-kinetic model (see below).

Long-trajectory simulations in S1 protocol produce
Marcus parabolas (dashed lines in Figure 9) with the
curvatures reproducing reorganization energies listed in
Table II. Figure 9 also shows the non-ergodic parabo-
las. Before explaining the calculation of those, we first
need to comment on the experimental preparation of the
initial state for charge separation. The initial state for
primary charge separation is prepared by photoexcita-
tion of the special pair which prior to that stays in the
ground state for a time long compared to any relaxation
time in the system. The ground state is thus character-
ized by the equilibrium polarization P′

eq +Peq of which
P′

eq is the result of the inhomogeneous protein/water en-
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FIG. 10: Free energy surfaces of primary charge separation
obtained from MD simulations of the reaction center with
polarizable (fluctuating charges, S2) special pair. The upper
curve is obtained from the simulation analysis with a 4 ps
observation window, while the lower curve refers to the ob-
servation window of 15 ns. The dashed line is the fit of the 15
ns simulation data to the analytical Q-model with the fitting
parameters: 〈∆E〉 = 0.07 eV, λs = 2.81 eV, and α = 0.45.

vironment and Peq comes from the polarization of the
environment by the special pair. When lifted to the
excited state by the absorbed photon, the special pair
changes its charge distribution and the polarization Peq

can dynamically adjust to the new equilibrium polariza-
tion P∗

eq. We will assume that this change, P∗
eq − Peq

is insignificant compared to P′
eq + Peq on the reaction

time-scale. We will therefore neglect the non-ergodicity
correction in the Coulomb component of the shift assum-
ing ∆EC(kET) = ∆EC. This approximation results in
the following non-ergodic free energy surface

G(kET, X) =
(X − 〈∆E〉)2

4λ(kET)
(45)

In this equation,

λ(kET) = λind + fλ
ne(kET)λ

C (46)

is the non-ergodic reorganization energy affected by the
dynamical arrest of the Coulomb component of the sol-
vent reorganization. The fit of the rate constant to ex-
periment (see below) results in fλ

ne = 0.21, and the free
energy surface obtained by using this non-ergodicity pa-
rameter is shown by the solid line in Figure 9.
There is a significant difference between the way the

initial and final states for the first electron hop are cre-
ated. The final state is characterized by an instanta-
neously created dipole moment of the charge-separated
state and so the corresponding Stokes shift requires non-
ergodic correction with the following result for the final
free energy surface

G′(X) =
(X − 〈∆E〉+ f ′

ne∆Xst)
2

4λ′
+∆Gne (47)

In this equation, ∆Xst is the total Stokes shift between
the minima of two parabolas achieved on long simulation
trajectories. The non-ergodicity parameter f ′

ne and the
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reorganization energy λ′ depend on both the life-time of
the charge-separated state and the corresponding Stokes
shift dynamics. Finally, the vertical energetic separation
between the parabolas’ minima ∆Gne (not the reaction
free energy) follows from the condition G(kET, 0) = G′(0)
once all other parameters are known.

We currently do not have sufficient data to calcu-
late the non-ergodic parameters in eq 47 (which require,
among other things, the free energy surface correspond-
ing to the electron located at HL) and so will limit our
arguments to qualitative considerations only. The equi-
librium free energy surfaces obtained from long simula-
tion trajectories are vertically shifted by ∆G = −1100
cm−1. This number is consistent with experimental data
from recombination rates12,13 which have put the lowest
limit for ∆G at ≃ −2000 cm−1. This later value might be
overestimated since it was measured on the 100-µs life-
time of the triplet state of the special pair. Delayed flu-
orescent measurements29 sampling the system on the 20
ns time-scale and photovoltage measurements at the 15
ns time-scale,100 both comparable to the length of sim-
ulations, show somewhat smaller gaps, ∆Gne ≃ −1370
cm−1 and −1180 cm−1, respectively. The latter data
refer, however, to the Rhodospirillum rubrum reaction
center.

We need an assignment of f ′
ne in eq 47 to produce the

non-ergodic free energy surface of the charge-separated
state. If we use f ′

ne = fλ
ne = 0.21 from the analysis of

the primary charge separation rate, we get essentially no
vertical shift of the two parabolas, ∆Gne = 97 cm−1.
The vertical shift of −450 cm−1 reported by Zinth and
co-workers28 is obtained when f ′

ne = 0.6 is used in eq 47.
This latter value of the vertical displacement of parabo-
las minima, measured on the picosecond time-scale, com-
pares well with the estimate by Holzwarth and Müller,30

−331 cm−1, also done on the picosecond scale. We will
postpone a more detailed analysis of the energetics of
subsequent electron hops to a future publication, while
the current analysis is aimed to show that overall our
results do not contradict the key experimental observa-
tions reported in the literature. We only note here in
passing that, similar to our previous simulations of hy-
drated plastocyanin,101 our present simulations show a
clear separation between the Stokes shift ∆Xst and twice
the solvent reorganization energy, 2λs (also see ref 65).
We will address this problem in more detail elsewhere.102

We need to caution here against a too literal under-
standing of the non-ergodic free energy surfaces of elec-
tron transfer. Under ergodic conditions, the free energy
surface can be sampled by changing the average energy
gap by, for instance, optical spectroscopy. The result can
then be directly applied to the Frank-Condon factor of
the reaction yielding the reaction energy gap law. In the
case of non-ergodic reactions, this direct application of
the free energy surface obtained at a given observation
window is prohibited since the spectrum of fluctuations
changes at each rate constant achieved by horizontally
sliding the free energy surface and thus sampling the av-

erage gap. In order to illustrate that, we have plotted
in Figure 9 the free energy surface obtained by changing
the average energy gap in the self-consistent non-ergodic
equation for the rate constant (eq 28). The result is a
funnel-like surface, which we also previously obtained in
a study of ergodicity breaking in liquid crystals.103 The
such obtained curve transforms from the narrow free en-
ergy surface at a high reaction rate to the thermodynamic
surface when the barrier for the reaction increases and
the rate slows down.
As is clear from the broader distribution of energy gaps

for the polarizable special pair (Figure 3) and from Table
II where specific values of the reorganization energies are
listed, the free energy surfaces G(X) are quite different
for a polarizable and non-polarizable special pair. As a
matter of fact, not only curvatures (reorganization en-
ergies) are different in two cases, but also the shape of
the free energy surface changes from a Marcus parabola
in the former case to a significantly asymmetric shape in
the latter (Figure 10). This result is consistent with the
predictions of the Q-model of electron transfer in polariz-
able donor-acceptor complexes and, in fact, the simulated
curve is well fitted to eq 41 (dashed line in Figure 10).
Note that the reorganization energy obtained from the fit
is close to the result of direct calculation from the second
cumulant (eq 15, Table II).
The increase in the reorganization energy in the case of

polarizable P comes from fluctuations of the amount of
charge transfer between the covalent and ionized states
of P (Figure 11). It is clearly seen from Figure 11 that
energy gap fluctuations in excess to those existing for
non-polarizable P trace the fluctuations of nCT . Most
of the excess reorganization energy comes from the pro-
tein. The reorganization energy from water actually gets
smaller when polarizability is introduced, but the protein
reorganization energy is increased by a factor of four.
We do not currently have an established theoretical al-

gorithm of how to calculate the non-parabolic free energy
surfaces of electron transfer involving highly polarizable
donor-acceptor states when ergodicity is broken. In the
absence of a theoretical formalism, we have turned to
simulations. Figure 10 shows the free energy surface pro-
duced from simulations by sliding the observation win-
dow of the length 4 ps along the trajectory and then
averaging all the histograms produced from each window
after shifting them to a common probability maximum.
The normalized distribution produced in this way is then
used to plot the non-ergodic free energy curve shown in
Figure 10. In contrast to distributions obtained with the
non-polarizable simulation protocol, the non-ergodic sur-
face turns out to be non-parabolic. We do not presently
have a good explanation of this observation.

D. Charge-transfer rates

The decay of the population P (t) of the photoexcited
special pair is known to be non-exponential.43,104,105 Re-
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FIG. 11: The trajectory of the population of the charge trans-
fer state of P (a) and the trajectory of energy gap fluctuations
(b) for non-polarizable (black line) and polarizable (gray line)
special pair.

cent explanations of this observation43,106 have cast the
problem in terms of the Fokker-Planck kinetics with a
Golden Rule reaction sink, similar to formalisms devel-
oped in the past by Agmon and Hopfield107 and Sumi
and Marcus.44 This theoretical algorithm offers the fol-
lowing physical picture. At the initial time t = 0, a
laser flash lifts the equilibrium population Peq(X) of the
ground P to the excited state P∗ (dashed line in the left
panel in Figure 12). At this moment, the state P∗ is
fully occupied, P (0) = 1. The system can decay to the
charge-separated state with the frequency ωe (eq 4) at the
activated state X = 0 thus depleting P (t) and changing
Peq(X) to P (X, t) (dash-dotted line in the left panel in
Figure 12). At the initial time, P (X, t) ≃ Peq(X), and
the decay is determined by the equilibrium rate kET given
by eq 3. However, as the population of the activated state
X = 0 depletes from that given by the Boltzmann dis-
tribution, the continuation of the reaction requires a dif-
fusional supply of the population to the activated state.
The result is a slower population decay and effectively
multiexponential kinetics. Given that the activation bar-
rier is small for primary charge separation (Figure 9),
the diffusional regime kicks in at the early stage of the
reaction leading to observable deviations from monoex-
ponentiality.

Two complications need to be recognized in applying
this type of diffusion-reaction kinetics to the problem of
primary charge separation. The first complication, well-
recognized in studies of the dynamic solvent effect on
electron transfer in small molecules,46,108 is related to the
fact that the Stokes shift dynamics are non-exponential,
in particular in its initial Gaussian stage. The common
approach to the problem, going back to the Sumi-Marcus
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FIG. 12: Left panel: Photoexcitation of the special pair lift-
ing the equilibrium distribution (dashed line) from the ground
state to the electronically excited state. This excitation starts
the decay of the population through the Gaussian sink k(X),
along with the one-dimensional diffusion given by the Fokker-
Planck operator LP (x, t). The dash-dotted line indicates de-
pletion of the population at the side of the sink resulting in a
slowing down of the population relaxation and in overall non-
exponential kinetics. Right panel: Population decays of mu-
tants of the reaction center of Rhodobacter sphaeroides taken
from ref 43 (points) and fits of P (t) to the diffusion-reaction
model (solid lines). The legend in the right panel specifies mu-
tants altering the local electrostatic potential at the special
pair.89 The dashed line marked kET shows the initial popula-
tion decay with the electron transfer rate constant according
to eq 52.

formalism,44 is to split the overall energy gap X into a
fast, xf , and slow, x, components, X = xf + x. The
evolution operator along the reaction coordinate X is
then averaged over the equilibrium distribution of the
fast component, resulting in a diffusion-reaction equation
for the population along the slow reaction coordinate x
only:

∂P (x, t)/∂t = [L(kET , x)− k(x)]P (x, t) (48)

In this equation, L(kET , x) is a diffusional operator

L(kET , x) = D(kET )
∂

∂x

[

∂

∂x
+ β

∂G(kET , x)

∂x

]

(49)

describing the Fokker-Planck dynamics in the poten-
tial given by the electron-transfer free energy surface.
For multi-exponential decay, a time-dependent diffu-
sion constant can be used for the harmonic potential
G(kET, x),

109 while an effective relaxation time τeff needs
to be defined for a general potential. Following Hynes,110

this relaxation time is defined here in terms of a weighted
sum of the corresponding rates of exponential relaxation.
For a bi-exponential long-time tail in eq 21, one gets

τ−1
eff =

(

λC
1 τ

−1
1 + λC

2 τ
−1
2

) / (

λC
1 + λC

2

)

(50)

The diffusion constant in eq 49 then becomes D(kET ) =
2kBTλ

C(kET )/τeff. Finally the rate constant k(x) in eq
48 is the Golden Rule rate averaged over the equilibrium
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distribution of the fast relaxation component

k(x) = ωe

√

λs/(λC
G + λind) exp

[

−β
(〈∆E〉 − x)2

4(λC
G + λind)

]

(51)
where λC

G is the fast Gaussian component of decay in eq
21, λind is the induction reorganization energy, and 〈∆E〉
is given by eq 5.
Most studies applying this formalism in the past have

assumed that the overall rate of diffusional reaction, i.e.
the rate of arriving at the transition state X = 0 from
the bottom of the potential well, is much smaller than
the relaxation rate of any nuclear mode coupled to elec-
tron transfer. This is obviously not true in our case,
and non-ergodicity corrections, already introduced into
eqs 48–51, are required. These corrections come in the
form of the free energy surface G(kET, x) depending on
the rate kET (eq 34), as well as the diffusion coefficient
D(kET) depending on the non-ergodic reorganization en-
ergy λC(kET). Therefore, any solution of the dynamic
diffusion-reaction equation should produce a closure for
kET and then solved by repeated iterations.103 Equation
48 was solved employing the generalized moment expan-
sion of Nadler and Marcus45 to produce kET as the initial
population decay (right panel in Figure 9)

kET = −d lnP (t)

dt

∣

∣

∣

∣

t→0

(52)

where P (t) =
∫

P (x, t)dx. This condition establishes the
closure for the self-consistent calculation of kET by re-
peated solutions of eq 48. The free energy surface is
then obtained by a horizontal shift of eq 45, G(kET, x) =
x2/[4λ(kET)].
The approach outlined here results in a good agree-

ment with experimental population decays for a number
of mutants reported by Wang et al43 (Figure 12) with
the input parameters produced by S1 simulation proto-
col. Also notice that the rate constant in the sink term in
eqs 48 and 51 is purely classical and does not incorporate
quantum vibrations. For reactions in the inverted region,
quantum Franck-Condon vibrational overlaps provide ad-
ditional vibronic channels for electronic transitions.111

Primary charge separation appears to operate in the nor-
mal region89 (Figure 8) and quantum vibrations can be
omitted. Notice, however, that classical phonon modes
have been included into the fast Gaussian and induction
components of the reorganization energy.
The Stokes shift correlation function necessary to cal-

culate the non-ergodic reorganization energy from eq 27
at each iteration step in eq 48 was taken from MD sim-
ulations of the reaction complex (Figure 13). Several
important observations follow from examining Figure 13.
The ballistic component of the decay, arising from bal-
listic motions of water and quasi-lattice vibrations of the
protein matrix, is significantly diminished112 compared
to the Stokes shift dynamics of small chromophores in
water.16 Indeed, the sum of the Gaussian component of

FIG. 13: Stokes shift correlation function of primary charge
separation obtained from 5-15 ns MD trajectories in S1 and
S2 simulation protocols. S(t) at different temperatures with
non-polarizable special pair are shown in (a). In (b), the over-
all Stokes shift correlation function at 300 K (marked as X) is
compared to its components from Coulomb and induction in-
teractions, along with the Coulomb/induction cross term (eq
17). In (c), the same separation into components of S(t) is
shown for simulations with the polarizable special pair at 300
K.

the Coulomb reorganization energy and the induction re-
organization energy, both responsible for the fast decay,
is below 20% of the overall solvent reorganization energy
λs. This fact is critical for the analysis of non-ergodic
free energy surfaces of electron transfer as the fast relax-
ation component is essentially the only part of nuclear
reorganization which is not dynamically arrested on the
short time-scale of charge separation (see below).

The exponential tail of the Stokes shift decay becomes
slower with cooling, as expected. The effective relaxation
time τeff(T ) can be calculated from the fitted exponential
relaxation times according to eqs 22 and 50 and fits well
by an Arrhenius function (200 ≤ T ≤ 400 K) with the
activation energy of Eτ = 1212 K. This activation barrier
is close to the value ≃ 1060 K reported for the long-time
tail of the fluorescence decay of an optical probe bound
to a protein.113 This activation barrier was assigned to
local segmental motions of the protein coupled to the
hydration layer. The long tail in the Stokes shift corre-
lation function observed here is, however, shorter than
that reported in ref 113 and is in fact close to the slow
protein-water dynamics with the characteristic time of
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≃ 90 ps recently reported from Stokes shift data in ref
114.

The combination of the Arrhenius temperature depen-
dence with the low activation energy points to the link
between exponential Stokes shift relaxation and β relax-
ation of the protein/water system. Previous measure-
ments of α relaxation in hydrated proteins have consis-
tently shown much larger effective activation barriers of
the order 6000–9000 K,20,115 in addition to the breaking
of the Arrhenius law in a broad temperature range. We
therefore conclude that primary charge separation is cou-
pled to two nuclear modes: Gaussian ballistic/phonon
motions and exponential β relaxation. The relaxation
time of the former turns out be close to 0.1 ps80 and is
essentially independent of temperature. We note in this
regard that anharmonic protein displacements shown in
Figure 7 are also linked to β relaxation.20 The decoupling
of the Stokes shift dynamics of the primary charge separa-
tion from α relaxation is distinct from the situation com-
monly seen for solvation dynamics of small solutes17 and,
among other things, implies that dielectric α-relaxation
data, routinely used to calculate solvation dynamics of
small chromophores,22 have little to do with the dynam-
ics of primary charge separation.

Stokes shift dynamics allow us to calculate the non-
ergodic reorganization energies entering the reaction
rates and population decays. Table III reveals yet an-
other important mechanistic aspect. It shows that the
reorganization energy of water is significantly cut off by
the dynamical arrest. Reorganization of fast, anharmonic
quasi-lattice vibrations of the protein emerges from the
water dominance in the thermodynamic limit, acting as
the leading mode driving electronic transitions on the pi-
coseconds scale.

We now turn back to the calculation of the rates of pri-
mary charge separation. Two types of laboratory exper-
iments are most relevant to our discussion. The first are
the measurements by Fleming and co-workers1 of charge
separation rates in a broad range of temperatures be-
tween helium 5 K and room temperature, 300 K. The ex-
perimental observation, which has puzzled theorists ever
since, is a very gentle decay of the electron transfer rate
over the whole temperature range (open points in Fig-
ure 14). This result is apparently inconsistent with any
conceivable temperature dependence of equilibrium nu-
clear solvation energies, even if activationless electronic
transition is realized at some intermediate temperature.
The second set of experimental results, reported by Allen
and Woodbury and co-workers,43,89 provides population
decays of P∗ in a carefully engineered set of mutants al-
tering the electrostatic potential at the location of the
special pair. A surprising result of these experiments was
the realization that the wild-type reaction center falls off
the top of the energy gap law into the normal region of
electron transfer.89

Our current calculations, based on the input from MD
simulations and the concept of solvation non-ergodicity,
are capable of reproducing the experimental decay curves
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FIG. 14: Temperature dependence of the rate of primary
charge separation from experiments by Fleming et al1 (points)
and from calculations of the rate using the gas-phase energy
∆Egas = 1.86 eV and V = 41.5 cm−1 adjusted to reproduce
the rate at T = 300 K (solid line). The dotted line repre-
sents the fit of experimental data to an empirical equation
suggested in ref 1.

P (t) for the whole set of mutants studied by Allen and
Woodbury (Figure 12). In the fit, the electron transfer
matrix element was obtained from the 300 K rate of the
wild-type reaction center and the inhomogeneous compo-
nent of the average energy gap ∆EC

inh was varied among
the mutants (electrostatic mutations89). The fitted vari-
ation of ∆EC

inh is consistent with changes in the midpoint
electrochemical potential upon the mutation (Appendix
C). In order to further test the consistency of these re-
sults with the experimental database, one needs to prove
that the experimental rates at different temperatures1

can be obtained with the set of parameters used to fit
the mutagenesis data. These results are shown in Figure
14 with the details of calculations given in Appendix C.

Proper account of the temperature variation of the pa-
rameters entering the activation barrier is important in
reproducing the observed rates. The main factor here
is the temperature dependence of the induction shift,
which is well converged in our simulations and slopes
positively with increasing temperature (Table I). Unfor-
tunately, the accuracy of the current simulations does
not allow us to address the temperature dependence of
the Coulomb components of the energy shift and reor-
ganization energy since their changes in the interval of
temperatures studied are within the uncertainties of nu-
merical simulations. Our previous experience with an-
other photosynthetic protein, plastocyanin, suggests that
the length of the simulated trajectories needs to be ex-
tended up to at least 20 ns for a reliable estimate of
the temperature slope,116 which is beyond our current
computational capabilities. Therefore, in order to as-
sign realistic slopes to the Coulomb components of the
free energy barrier, we used our previous observation62,92

that the results of many calculations and experiments
on small solutes in polar solvents give the logarithmic
slope of the Coulomb reorganization energy in the range
∆λC/λC ≃ −(2−3)×10−3∆T . The Coulomb reorganiza-
tion energy was then assigned the slope of ∆ lnλC/∆T =
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TABLE III: Solvent reorganization energies (eV) and their water and protein components from MD simulations. The reorga-
nization energies depending on the reaction rate were obtained from Stokes shift dynamics according to eq 27. kET refers to
the charge separation rate at the corresponding temperature.

Protocol T/K λs λs(kET) λw λw(kET) λprot λprot(kET)
S1 77 0.421 0.266 0.191 0.072 0.245 0.210

200 0.903 0.257 0.756 0.106 0.251 0.201
250 1.955 0.261 1.639 0.126 0.419 0.235
300 1.598 0.454a 1.124 0.124 0.466 0.260
350 2.239 0.657 1.246 0.202 1.407 0.611
400 1.335 0.639 0.866 0.259 0.797 0.451

S2 300 2.513 1.276 1.454 0.188 1.385 0.970
aDirect fits of the experimental population decays to the Sumi-

Marcus model considering the average energy gap and the reor-
ganization energy as fitting parameters gave λs = 0.350 eV and
〈∆E〉 = 0.150 eV.43
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FIG. 15: Charge separation rate vs the variation of the av-
erage donor-acceptor energy gap produced by mutagenetic
substitution (points43). The lines are obtained by horizontal
shifts of the non-ergodic parabolas of the initial charge sepa-
ration state obtained in S1 protocol (solid line, Figure 9) and
in S2 protocol (dashed line, Figure 10). In experiment, mu-
tagenetic substitution varies the inhomogeneous part of the
Coulomb component of the average vertical gap and there-
fore that parameter marks the horizontal axis, ∆∆EC

inh = 0
corresponds to the wild-type reaction center.

−1.3×10−3 K−1 and, based on its relative magnitude, the
Coulomb component of the average energy gap was given
the slope of ∆(ln∆EC)/∆T = 5.2 × 10−4 K−1 (see Ta-
ble IV in Appendix C). These assignments do not affect
our results much since a close fit can also be obtained by
assuming these these two parameters are temperature-
independent. We finally note that the problem of the
temperature dependence of the reaction parameters, in
particular the driving force, is not free of controversy.
Opposite signs of reaction entropy have been obtained
for different charge-transfer reactions12,117 in the reac-
tion center and temperature-independent parameters are
routinely used in the analysis.118,119

The non-ergodic free energy surface of electron trans-
fer (narrower surface in Figure 10) obtained from simula-
tions with a polarizable special pair can also be used to fit
the experimental reaction rate at 300 K. This fit results
in the gas-phase gap of ∆Egas = 1.57 eV used in Figure
10 to plot the free-energy surfaces. This value of the gas-

phase gap yields the average energy gap of 〈∆E〉 = 0.150
eV, consistent with the experimental evidence89 and pre-
vious fits of the rates by Wang et al.43 The non-ergodic
reorganization energy obtained from fitting the curvature
at the minimum of the G(kET, X) curve turns out to be
0.39 eV, close to the value of 0.46 eV reported for S1 sim-
ulations in Table III and the value of 0.35 eV reported
by Wang et al.43 The non-ergodic free energy curves from
Figures 9 and 10 are used to construct the energy gap law
of electron transfer plotted against the variation of the
inhomogeneous electrostatic potential of the protein, as
was done in mutagenesis experiments.89 We find that po-
larizable and non-polarizable simulations result in close
shapes of the energy-gap law.

IV. DISCUSSION

A. Mechanism of electron transfer activation

The extensive MD simulations of the bacterial reac-
tion center combined with formal modeling have allowed
us to look closely at the nuclear modes driving electronic
transitions and their energetic balance in the reaction ac-
tivation barrier. Several qualitative results have emerged
from our analysis. From the viewpoint of the relative par-
ticipation of different types of interaction potentials, we
have shown that induction and Coulomb forces give com-
parable contributions to the average energy gap, while
Coulomb interactions tend to dominate the reorganiza-
tion energy of electron transfer. A significant finding
of this study is the realization that, on the nanosecond
time-scale achievable by numerical simulations, the reor-
ganization energies and shifts are quite significant, much
larger than had been anticipated so far. The under-
standing that most of this nuclear solvation is dynam-
ically frozen on the time-scale of the reaction then be-
came critical for the quantitative description of the ob-
servable rates. While water dominates the reorganiza-
tion energy on the nanosecond time-scale, most of this
solvation freezes on the picosecond reaction time-scale,
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FIG. 16: Total Stokes shift correlation function of primary
charge separation compared to the Stokes shift correlation of
reaction center tryptophans (dashed line) and to the normal-
ized self-correlation function of the fluctuations in the donor-
acceptor distance RDA(t) between the special pair and bacte-
riochlorophyll (dash-dotted line). The lower solid line shows
the correlation function of tryptophan absorbance band taken
from ref 43.

and protein vibrations emerge as the main nuclear mode
driving electronic transition. Still, there is a noticeable
component of water reorganization, originating from the
ballistic Gaussian decay of the Stokes shift correlation
function, left even on the picosecond time-scale (Table
III).
Once the protein is identified as the major heat reser-

voir operating on the picosecond time-scale of the re-
action, one can try to identify a particular mode most
strongly coupled to the transferred electron and driving
the electronic transition. Several answers to this ques-
tion have been proposed in the past. Wang et al.43 sug-
gested to use transient changes in tryptophan absorbance
at 280 nm to monitor the electron transfer kinetics. In
this approach, photoexcited tryptophan serves as a time-
resolved probe of the ultrafast nuclear rearrangement
of the protein matrix with the hope that the dynamics
recordered by spectroscopy will match the Stokes shift
dynamics unreachable by spectroscopic techniques. Since
both types of information are available from our simula-
tions, we have tested this hypothesis here.
Figure 16 compares the Stokes shift dynamics of pri-

mary charge separation with the Stokes shift dynamics of
tryptophan averaged over all tryptophans in the reaction
center protein. Although these two match each other
reasonably well, the experimental trace43 shown in the
same plot is quite different having, in particular, a much
faster initial decay.120 It turns out that this experimental
trace matches quite well the autocorrelation function of
the donor-acceptor distance between the special pair and
the accessory bacteriochlorophyll cofactor BL (Figure 2,
also see Figures S1 and S2). The decay of this function is
also caused by protein vibrations suggesting that the ex-
perimental observation traces one of the long-wavelength
vibrational modes responsible for large-scale protein mo-
tions, but not necessarily the modes contributing pri-
marily to the Stokes shift dynamics of primary charge
separation.
In fact, following an early proposal by Gehlen et

al,81 Chaudhury et al.106 recently suggested that donor-
acceptor vibrations represent the mode activating elec-
tronic transitions. Our current results do not support
this hypothesis. The dynamics of the donor-acceptor
vibrations are different from the Stokes shift dynamics.
In addition, both the self-correlation function of donor-
acceptor distances and the experimental trace of Wang et

al.43 produce too large an amplitude of the initial decay
which would make a larger portion of nuclear solvation
unfrozen on the time-scale of the reaction, thus invalidat-
ing the analysis of the reaction rates (see below). On the
experimental side, related evidence shows the low sensi-
tivity of charge-recombination rates to high pressure (up
to 345 MPa) which caused about 16% of volume change
of the sample.121

What has not been considered so far in the long history
of modeling primary charge separation is the possibility
that a high polarizability of the photoexcited special pair
can significantly modify the energetics of the reaction.
Our simulations here are the first attempt to understand
the possible consequences of the gigantic polarizability of
the special pair for the charge-transfer energetics and ki-
netics. The polarizability of the special pair was modeled
here by the two-state model35,122 with the dynamic ad-
justment of the population between charge-transfer and
neutral states of the primary pair along the simulation
trajectory. The two-state model has its obvious limita-
tions and a possibility of a broader spectrum of electronic
states75,123 can be considered in the future, along with
improved modeling of the temperature variation of the
absorption spectrum of the special pair. Nevertheless,
the present simulations give the first insights into what
sort of changes to the energetics should be anticipated
when the polarizability has been taken into account.

What we have found here is consistent with previous
studies of the role of polarizability in the energetics of
electron transfer.39,40 The free energy surface of the ini-
tial electron-transfer state involving a polarizable spe-
cial pair is significantly distorted compared to Marcus
parabolas which we obtained in the simulation protocol
with the non-polarizable primary pair (cf. Figures 9 and
10). The reorganization energy, obtained as the variance
of the energy-gap fluctuations, is significantly enhanced
compared to the case of non-polarizable simulations, also
in agreement with the previous studies.40,124 The free en-
ergy curve could be fitted with the analytical equations
of the Q-model, which introduces a non-parabolicity pa-
rameter in addition to the two-parameter description of
the Marcus model.

Although the free energy curve from the 15 ns tra-
jectory shown in Figure 10 is perhaps the most asym-
metric electron transfer free energy surface ever reported
from numerical simulations,40 most of this asymmetry is
washed out by the dynamical arrest of nuclear solvation
on the reaction time-scale. The free energy surface nar-
rows down and approaches the Marcus parabola on the
4 ps observation window (Figure 10). In fact, the rate
of charge separation can be equally well described by ei-
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ther polarizable or non-polarizable simulation data with
a close range of parameters and a close match between
the resulting energy gap laws (Figure 15). It appears that
what charge separation probes on the picosecond obser-
vation window is a stripped surrogate of the rich dynam-
ics and thermodynamics of the protein/water electrostat-
ics on the time-scale of thermodynamic observables. Na-
ture has therefore played with dynamical time-scales to
reduce these complexities to a near-resonance electron
transfer driven by ballistic phonon motions.

B. Rates of primary charge separation

The ideas of non-ergodic nuclear solvation advocated
here were tested for consistency with experimental ob-
servations by calculating the rates of charge separa-
tion as a function of temperature,1 and the kinet-
ics of the population decay depending on mutagenetic
substitution.43 Since the simulation protocol involving
the non-polarizable special pair had produced Marcus
parabolas for the free energy surfaces, we were able to
use the diffusion-kinetic model advanced by Sumi and
Marcus44 in order to calculate the population decay. The
main question we were asking here is whether the use
of the same set of fitting parameters (electron-transfer
matrix element V and the gas-phase energy gap ∆Egas)
would provide us with a consistent description of both
sets of experiments. We obtained a positive result here
(Figures 12 and 14).
A fit of the population decay to the Sumi-Marcus

diffusion-kinetic model was also presented by Wang
et al.43 In their analysis, the diffusion coefficient was
taken to be time-dependent in order to reflect the non-
Markovian character of the relaxation.109 Both the aver-
age energy gap and the reorganization energy were con-
sidered as fitting parameters. We found that the use of
the time-dependent diffusion coefficient is not a necessity
since the same data can be reproduced with an effec-
tive diffusion coefficient extracted from Stokes shift cor-
relation functions. What distinguishes our analysis from
their’s is that the solvent-induced shift of the average en-
ergy gap and the reorganization energy are fixed by MD
simulations, instead of used as fitting parameters. The
gas-phase gap and the electron transfer matrix element
were fitted to the rate at 300 K, but then, these parame-
ters allowed us to reproduce Fleming’s data. With these
restraints on the parameters’ magnitudes, there is very
little room for adjusting the two parameters. We also
note that the results of the calculations, and of our sim-
ulations of the charge-separated state P+-B−

L , are con-
sistent with the current state of experimental evidence
regarding the energetics of primary charge separation, as
we have discussed in sec III C.
The negative slope of the charge separation rate with

increasing temperature has puzzled theorists for two
decades, and has mostly been approached by considering
a temperature-dependent population of phonon modes

coupled to electron transfer.11 Although our simulations
and conclusions are for the most part limited to high
temperatures greater than 200 K, explaining the nega-
tive temperature slope of the rate in this region does not
require vibronic coupling models. We found the reaction
rate to follow the temperature variation of the induction
component of the average energy gap which itself be-
comes less negative with increasing temperature because
of the protein expansion.
We have confirmed the observation made by Haffa et

al.89 that primary charge separation falls into the nor-
mal region of electron transfer (Figures 9 and 15). This
result was considered incompatible with the weak tem-
perature dependence of the rate, and a vibrational heat-
ing mechanism89,125,126 was suggested in order to explain
the positive 〈∆E〉. Our current calculations suggest that
Fleming’s data can be reconciled with 〈∆E〉 ≃ 0.15 eV
for the wild-type reaction center without assuming vibra-
tional heating once the temperature dependence of 〈∆E〉
is taken into account. The main component of 〈∆E〉
responsible for its temperature dependence is the shift
by electronically instantaneous induction forces which
do not get dynamically frozen, but rather change due
to a temperature-affected alteration of protein’s refrac-
tive index (eq 43). Our simulations also suggest that
the wild-type reaction center is driven even further from
the optimum activationless energetics when temperature
increases above the room temperature and that the op-
timum activationless configuration is reached at around
200 K (Figure S3). We refrain from speculations on evo-
lutionary implementations of this result.

C. Broader insights

Electron transfer connects cofactors in energetic redox
chains in biology. Three parameters are generally be-
lieved to have the main impact on the kinetics of elec-
tron hops: the redox potential, the probability of tun-
neling, and the reorganization energy. The first one
is relatively well understood, and in many cases, ac-
cessible to measurements. The distance decay of elec-
tron tunneling has attracted significant attention of the
theoretical127,128 and experimental129 communities in re-
cent decades. Although the importance of specific path-
ways in the polypeptide structure vs the generic tun-
neling decay specified by the height of the potential
barrier is still actively discussed,129,130,131,132 there is a
general consensus about the magnitudes of matrix ele-
ments involved and the distance decay of the tunneling
probability.129,133

The last component of the biological electron transfer
picture, the reorganization energy, is probably least un-
derstood. Although the reorganization energy is the hall-
mark of the classical Marcus theory of electron transfer,52

not much is known about both its value and the micro-
scopic modes responsible for reorganization in protein129

and DNA134 electron transfer. For proteins, the exper-
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imental evidence mostly comes from kinetic measure-
ments of ruthenium-modified proteins introduced into
the field by Gray and co-workers,135 and some recent
reports from computer simulations.90,136,137 Notice that
computer simulations reported in the past were mostly
limited to either very short trajectories65,80,136 or es-
timates of the reorganization energy from the Stokes
shift,90,137 which does not necessarily provide the correct
value of the reorganization energy defined through the
variance of the energy gap.101 The uncertainties of reor-
ganization energy values have led Dutton and co-workers
to suggest130 a generic value of 0.7 eV for electronic tran-
sitions between cofactors not exposed to water with the
provision that smaller values might be required for photo-
synthetic electron transfer. The fits of the photosynthetic
rates have been attempted many times and extremely
low values of the reorganization energies (as low as 0.1
eV12,119), completely unthinkable in light of our present
simulations, have been reported in the literature.

Our present work gives a different perspective to the
problem of the activation barrier of electron transfer in
proteins. We claim that the range of reorganization ener-
gies fundamentally attainable in protein electron trans-
fer is very broad given that the overall reorganization
energy attained in our present and previous101 simula-
tions is much higher than it was previously anticipated
(≃ 1.6 eV for S1 protocol and ≃ 2.5 eV for S2 proto-
col). The question of assigning the reorganization energy
thus turns not into its “generic” value, but into the ques-
tion of finding the protein/solvent reorganization energy
reachable on a given time-scale of the reaction, when a
certain portion of nuclear degrees of freedom is dynami-
cally frozen.

We could not identify any specific solvent and/or pro-
tein modes that drive electron transfer. Instead, the en-
ergetics of electronic transitions appear to be driven by
some generic set of ballistic modes which would prob-
ably characterize any heterogeneous solvent made of a
rigid core (protein) surrounded by a molecular polar sol-
vent (water). It also seems true that achieving both
the reaction rate of primary charge separation and its
low temperature dependence allows some, although not
large, flexibility in the driving force (≃ 0.3 eV between
photosynthetic bacteria12). Where the specific design of
the reaction center appears to matter is in providing a
sufficient tunneling rate between closely separated cofac-
tors. This part of the design turns out to be very essen-
tial since the fast rate allows the natural photosynthesis
to dynamically freeze nuclear solvation, and to achieve
low values of the reorganization parameters character-
ized by weak temperature dependence (ballistic motions
and local density fluctuations). It might therefore turn
out that “Darwin at the molecular scale”130 operates not
that much with redox potentials but, to a greater extent,
with relaxation time-scales.

Supporting Information Available: Atomic
charges of the bacteriochlorophyll cofactors from DFT
calculations and Figures S1–S3. This material is available

free of charge via the Internet at http://pubs.acs.org.
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APPENDIX A: SIMULATION PROTOCOL

Amber 8.047 was used for all MD simulations and mini-
mizations. The initial configuration of the reaction center
complex was taken from a crystal structure of the purple
bacterium Rhodobacter sphaeroides.42 The force fields of
bacteriochlorophylls, pheophytins, ubiquinones, and iron
center were taken from Marchi and coworkers.84 The pro-
tocol for the creation of solvated micelle was taken from
ref 48 with the slight variations described below.
First, it should be mentioned that the reaction center

was built without the carotenoid cofactor, since it was
deemed unnecessary for the photosynthesis function.122

The system was initially setup by protonating all lone
valences and assuming standard pKa values at pH= 7.
Next, conjugate gradient minimization was applied for
3N steps to remove bad contacts introduced by proto-
nation (N is the total number of protein atoms). A de-
tergent micelle was then created. The micelle was made
by placing on a circle of 8 LDAO molecules in the first
quadrant at the z = 0 plane, with the heads pointing to
the exterior and the tails pointing to the origin. Sym-
metry transformations were applied about x and y axes
to make a ring of 32 LDAO out of the first quadrant
LDAO molecules. The ring was then copied and trans-
lated along the z-axis to create four more rings, each 7 Å
apart. The protein was then rotated to align the quasi-
C2 axis with the z-axis, and translated so that the origin
overlapped with the protein’s center of mass. The rings
were placed around the protein making a tight fit, which
covered almost the entire alpha helix region.
To help to form a micelle, the protein was allowed to

relax by conjugate gradient minimization for another 3N
steps while the LDAO were kept in place using a har-
monic positional restraining force of 200 kcal/Å2. Then,
the force was removed and the system was slowly heated
in a vacuum at a rate of 20 K/ps until 200 K. After
this short time, the LDAO shell melted and collapsed
into a tight micellar structure around the reaction cen-
ter complex. The total energy of the system, the sum
of the van der Waals and electrostatic energy, decreased
during heating by several thousand kcal/mol indicating
the creation of a more stable structure. This step was
different from Ceccarelli and Marchi’s approach48 which
required heating to 400 K for several hundred ps in order
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to form a compact, equilibrated micelle. Once the mi-
celle was formed, the system charge was neutralized with
6 sodium ions, while another 30 NaCl pairs were added
to keep the system at an approximate 0.15 M salt con-
centration. Then, a total of 10,506 waters (10,503 in the
charge-separated state) were added to form a truncated
octahedron of the simulation cell.
Following the addition of the solvent and counterions,

each system was run through an additional equilibration
procedure. First, water was allowed to relax along a con-
jugate gradient minimization for 3N steps, while the mi-
cellar protein was held fixed with a weaker restraining
force of 10 kcal/ Å2. Next, the full solvated micellar sys-
tem was allowed to relax for another 3N steps to remove
any remaining bad contacts. Following this minimiza-
tion, the solvated system was heated again from 0 K to
the desired temperature for 30 ps (NVT ensemble). Af-
ter temperature equilibration, the volume was allowed to
expand in a 2 ns NPT run, which stabilized in less than
200 ps. Once the density was equilibrated, NPT produc-
tion runs lasting 5–15 ns (1–5 ns at T = 77 K) were used
to calculate the averages.
A single 2 fs timestep for all MD simulations was em-

ployed, and SHAKE138 was used to constrain covalent
bonds to hydrogen atoms. For constant temperature and
pressure, the system was coupled to a Berendsen thermo-
stat and barostat, respectively. The long-range electro-
static interactions were handled using a smooth particle
mesh Ewald summation with a 10 Å limit in the direct
space sum.139

APPENDIX B: ATOMIC CHARGES AND

CHARGE TRANSFER WITHIN THE SPECIAL

PAIR

The partial charges of the electron transfer cofactors
are not provided by the Amber force field and need to
be taken from quantum calculations. Due to the large
size of the molecules, we modified the bacteriochlorophyll
(Bchl) cofactors by replacing their phytyl side chains with
methyl groups. The quantum calculations of these mod-
ified molecules were performed using GAMESS(US)140

(B3LYP DFT/3-21G) and converted to partial charges
by CHELPG protocol, also implemented in GAMESS.
The charge distribution of atoms of the phytyl chain was
assumed to be the same for the neutral and charged co-
factors and was calculated using the Antechamber mod-
ule from Amber which employs the empirical AM1-BCC
method. The full sets of atomic charges (with phytyl
chains) given in Table S2 (supporting information) was
used in the MD simulations. Similarly, the distribution
of charge in the final charge-transfer state was obtained
from DFT partial charges of a negatively charged Bchl−

anion radical and a positively charged cation radical
Bchl+ (Table S2). The positive charge was distributed
unequally between the two Bchls of the special pair, with
2/3 of the positive charge residing on the L subunit (PL)

and 1/3 of the positive charge residing on M subunit
(PM ), as suggested by ENDOR studies of Rhodobac-

ter sphaeroides.141 The set of ∆qk charges (k runs over
the atoms of the cofactors) obtained by subtracting the
atomic charges in the initial neutral state from the ion-
ized state were used to calculate the Coulomb part of the
donor-acceptor energy gap. The partial charges on the
protein atoms were taken from the Amber FF03 force
field,142 and the TIP3P force field143 was used for the
partial charges of water.
We used Stark spectroscopy data by Lockhart and

Boxer68 as the starting point for determining the param-
eters of the charge-transfer state of the photoexcited spe-
cial pair. The change in the absorption dipole moment
within the special pair is about fc∆µ = 7 D larger than
in an isolated bacteriochlorophyll, where fc ≃ 1.2 is the
cavity field correction factor. If this change of the dipole
moment difference, measured at 77 K, is connected to
the mixing between the covalent (PM -PL)

∗ and charge-
separated, (P+

M -P−
L)

∗ states of the exited special pair,
then this change in the dipole moment can be written as

∆µ = nCT∆µCT (B1)

where ∆µCT is the dipole moment of the fully ionized
state (P+

M -P−
L )

∗ and nCT is the population of this state
at the given energy gap between the neutral and ionized
states. In terms of the two-state Hamiltonian, this pop-
ulation is given as

nCT =
1

2
− ∆ǫ

2∆ωP
(B2)

where ∆ǫ is the difference between diabatic energies of
the neutral and ionized states (eq 37) and ∆ωP is the
adiabatic energy gap between the eigenvalues of the two-
state Hamiltonian

∆ωP =
(

∆ǫ2 + 4J2
)1/2

(B3)

Here, J is the electronic coupling element between the
neutral and ionized states of the excited special pair and,
following Lathrop and Friesner,35 we assume that the
charge-transfer state (P+

M -P−
L )

∗ is predominantly mixed
with the lower excitonic state of the dimer.
When two bacteriochlorophyll radicals, P−

L and P+
M are

placed at their crystallographic positions, the resulting
dipole moment of the fully ionized state is ∆µCT = 40.2
D. This implies that average charge mixing between the
two states at 77 K is nCT(77K) = 0.143. In order to
determine the coupling parameter J from this number
we used the model vibronic Hamiltonian of Friesner and
co-workers which was shown to reproduce a number of
experimental properties (absorption, circular dichroism,
polarized absorption).35 In this model, the difference of
energies between the ionized charge-transfer and neutral
states of the special pair is 2800 cm−1, which, combined
with the population of charge-transfer state, gives J =
979 cm−1 and ∆ǫ = 1998 cm−1. The former value falls in
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between 600 cm−1 used by Lathrop and Friesner35 and
1450 cm−1 used by Renger.76

The electronic mixing between the neutral and ionized
states of the special pair will make its excited state more
polarizable than the ground state. The change in the po-
larizability associated with charge transfer can be readily
calculated from the two-state polarizability model which
gives

∆α = 2∆µ2
CTJ

2/(∆ǫ)3 (B4)

With the parameters calculated above, this equation
gives ∆α = 707 Å3, consistent with ∆α = 460 − 745
Å3 reported from fitting the Stark spectra.38

The energy gap ∆ǫ was obtained in by fitting the spec-
tra at 77 K35 and is not directly suitable for our simula-
tions at higher temperatures. The average energy gap be-
tween neutral and ionized states is made by the gas-phase
gap ∆ǫgas and a shift by polar and induction interactions
with the protein/water solvent (eq 37). In order to ex-
tract this shift, we have run a short (1 ns) MD simula-
tion of the reaction center at 77 K from which the solvent
shift was determined to be −0.974 eV. This number al-
lowed us to determine the gas-phase gap of ∆ǫgas = 1.222
eV which was used in the simulations of the polarizable
special pair. The simulations required modification of
Sander module of AMBER such that the instantaneous
energy gap and special pair charges are recalculated at
each fifth time step of the MD run.

APPENDIX C: FITTING EXPERIMENTAL

KINETIC DATA

Our model was applied to two sets of experimental
kinetic data, the temperature dependence of the pri-
mary rate from Fleming et al1 and time-resolved decays
of the population of the photoexcited special pair from
Wang et al.43 For the latter set of data, recordered at
T = 300 K, we used the solvent reorganization energy
from our MD simulations with the non-ergodic correction
extracted from the Stokes shift dynamics (eq 27). Pop-
ulation decays were calculated by solving the diffusion-
reaction Fokker-Planck equations (eqs 48–52) for the mu-
tants used in the experiment (Table S1). In contrast to
Wang et al43 who used three fitting parameters in their
analysis, the reorganization energy is fixed here by MD
simulations and only the gas-phase energy gap ∆Egas

and the electron transfer matrix element V were varied
to fit the rate constant at 300 K for mutant L170ND,
which is very close to the wild type reaction center with
the difference between their mid-point potentials of only
−0.007 eV.43 This fit has resulted in ∆Egas = 1.86 eV
and V = 41.5 cm−1 (> 60 cm−1 was identified for this
parameter in ref 144).
Special pair mutants introduce electrostatic perturba-

tions at the location of two sandwiched bacteriochloro-
phylls without significantly affecting the solvation com-
ponent of the reaction Gibbs energy. This implies the
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FIG. 17: Correlation between the change of the inho-
mogeneous Coulomb energy gap ∆∆EC

inh between mu-
tants and wild-type reaction center and the corresponding
changes in the midpoint redox potential ∆∆Em reported
experimentally.43 The values of ∆∆EC

inh are obtained from
fitting the theoretical curves for the population decay to
experiment43 (Figure 12) while keeping the electron trans-
fer matrix element and the gas-phase gap constant. The data
shown in the plot are also listed in Table S1 (supporting in-
formation). The dashed line indicates the unitary slope to
guide the eye.

variation of the inhomogeneous Coulomb component of
the energy gap, ∆EC

inh. This component was varied in fit-
ting the experimental P (t) curves of other mutants while
keeping the gas-phase gap and the electron transfer ma-
trix element constant. The variation of ∆EC

inh with muta-
tion relative to the wild-type reaction center then closely
follows changes in the midpoint potential (Figure 17).

The gas-phase shift ∆Egas and the matrix element V ,
obtained from fitting the rate at 300 K, were then used to
calculate the temperature dependence of the rate. This
calculation is complicated by the fact that all solvation
energies and solvation relaxation times depend on tem-
perature. The MD simulations do not provide sufficient
accuracy to reliably estimate the temperature change
of the Coulomb part of the reorganization parameters.
Their temperature dependence was estimated from lin-
ear interpolations with the slopes listed in Table IV (see
also the discussion in sec III D). The temperature de-
pendence of the induction component of the average gap
is the main ingredient in reproducing the slope of the
rate correctly. This component is converged exception-
ally well in MD simulations which were used to produce
∆Eind(T ).

The temperature dependence of the Stokes shift re-
laxation time makes the non-ergodicity correction fac-
tor fλ(kET) temperature-dependent as well. It turned
out that only the relaxation time τ2(T ) is strongly
temperature-dependent in the Stokes shift correlation
function approximated by three components according
to eq 21. The first two components were given constant
values, τG = 0.1 ps and τ1 = 2.5 ps, and the longest re-
laxation time was given the Arrhenius temperature law
ln τ2(T ) = 0.936+Eτ/T with Eτ = 1212.3 K. The results
of these calculations, shown in Figure 14, are in a good
agreement with the data by Fleming et al.1 in the range
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TABLE IV: Parameters used to fit the charge-separation rate at 300 K and to produce the temperature dependence of the
rate.a All parameters refer to the wild-type reaction center; temperature derivatives taken at 300 K are in K−1.

∆Egas, eV V , cm−1 d ln∆EC/dT d ln∆Eind/dT d lnλC/dT d lnλind/dT

1.86 41.5 5.2× 10−4 4.8× 10−4 −1.3× 10−3 1.1 × 10−2

aTemperature dependence of the Stokes shift correlation func-
tion was produced by using the following parameters in eq 22:
AG =0.172, τG = 0.1, A1 = 0.063, τ1 = 2.5 ps, τ02 = 2.55 ps,
Eτ = 1212 K with τ2(T ) = τ02 exp[βEτ ].
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