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Abstract 

A recently experimentally observed biochemical “threshold filtering” mechanism by 

processes catalyzed by the enzyme malate dehydrogenase is explained in terms of a model that 

incorporates an unusual mechanism of inhibition of this enzyme that has a reversible mechanism 

of action. Experimental data for a system in which the output signal is produced by biocatalytic 

processes of the enzyme glucose dehydrogenase are analyzed to verify the model’s validity. We 

also establish that fast reversible conversion of the output product to another compound, without 

the additional inhibition, cannot on its own result in filtering.    
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INTRODUCTION 

 

 Recent research in signal processing in molecular and biomolecular systems has focused 

on novel applications that involve cascades of chemical or biochemical reactions with several 

reagents as input/output signals.1-14 Such multi-input reaction cascades are used in biosensing, 

biomolecular computing, and decision making devices and setups utilizing (bio)chemical 

processes with well-defined responses.15-20 These systems require experimental design and 

theoretical understanding21-23 of chemical and biochemical reactions that allow signal response 

modification and control. Such processes are then incorporated in more complicated biochemical 

“networks” of concatenated reactions.24-29 Scheme 1(a) shows a typical response of a 

(bio)chemical process of input (at time ݐ ൌ 0) to output (at a later “gate” time ݐ ൌ  (୥ݐ

transduction, with approximately linear behavior at low inputs followed by a saturation region at 

larger inputs. The former is due to a low supply of the input, whereas the latter usually originates 

because other reactants limit the process rate. 

 

 In many biosensing applications it is useful to modify such a generic response to make it 

as linear as possible,30-44 by converting the response shape of Scheme 1(a) to that shown in 

Scheme 1(b), without too much loss of the over signal intensity. Recent work has involved30,31 

data analysis to develop a theoretical understanding of how two enzymatic processes with 

different nonlinear responses can be combined to yield an extended linear response regime. 

Multi-step and multi-input signal processing has been studied as potentially enabling 

biomolecular computing,5-9,45 i.e., information processing involving cascades of (bio)chemical 

reactions rather than being solely based on electronics. Biomolecular computing is a sub-field of 

unconventional computing,46-48 and it requires a “toolbox” of logic elements in order to build a 

binary network. Various binary logic gates have been demonstrated, including AND, OR, 

NAND, NOR, CNOT, XOR, INHIBIT, etc.6-9 Such gates were also connected in small 

networks,24-29 some if which carried out simple computational49,50 and information storage51,52 

steps. 
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Scheme 1. (a) A typical “convex” response shape for a chemical or biochemical process 

used as a single-input to single-output “transduction” step in signal/information 

processing. (b) Linear response desirable in many biosensing applications. The 

conversion from the convex to linear response, (a) (b), can result in the loss of some of 

the overall signal intensity. (c) “Binary” sigmoid-shape response of interest in 

biomolecular computing. The desirable response function should be symmetrical and 

steep at the middle inflection. The (a) (c) conversion also typically results in the loss of 

some intensity. (d) In applications of interest, the conversion of a linear response to the 

threshold one, followed by a linear behavior, (b) (d), is required. In this case the goal is 

to have a well-defined (practically zero slope) pre-threshold region for low inputs, and to 

preserve the sensitivity (the slope of the output curve) for large inputs.     
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 Both for individual binary two-input single-output gate realizations and especially for 

their networking, it is useful to have added non-binary network steps that convert a convex 

response, Scheme 1(a), to sigmoid, such as illustrated in Scheme 1(c). The goal for the simplest 

single input transduction is to have the resulting sigmoid response as symmetric and steep as 

possible, preserving the saturation regime at large inputs, and without losing too much of the 

overall signal intensity. Most of the reported designs and realizations31,53-65 of such “biochemical 

filtering” involved modifying the response at low inputs to a practically zero-slope, while largely 

preserving the saturation regime. These approaches, including generalizations to two-input 

processes, typically involve “intensity filtering” whereby the input or output is efficiently 

diverted (chemically consumed), but only up to a limited quantity. The added “filtering” process 

thus only affects (dampens) the low-input/low-output response. However, such systems usually 

do lose some overall signal intensity and have a less well-defined saturation regime at large 

inputs.   

 

 The work on binary logic has used biomolecular processes involving 

proteins/enzymes,9,66 DNA/RNA,5-8,67-69 and bacterial cells.70,71 Enzymatic processes are of great 

interest because they promise short-term development of new biosensing19,20,24,27,72-74 and 

bioactuating applications75-77 with even moderate-complexity reaction cascades. Indeed, most 

biosensing and bioanalytical devices involve enzymatic reactions, which are also relatively easy 

to integrate with electronics.78 The enzyme-based logic systems operating as binary (YES/NO) 

biosensors were also interfaced with electrochemical/electronic devices represented by 

electrodes73 or field-effect transistors.18,79,80  

  

 Recently, experiments25 on three-input majority and minority enzymatic gates for 

biocomputing applications have underscored the importance of another type of “biochemical 

filtering” as a part of the output biochemical post-processing to achieve the desired response. In 

this case the response of Scheme 1(b) is converted to that of Scheme 1(d), with the goal of 

controlling the threshold, i.e., the offset region of small inputs for which the output remains 

practically zero.  
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 In this work we demonstrate that the added “filtering” mechanism in the referenced 

experiments25 (and in the earlier work on filtering81) utilizing the enzyme malate dehydrogenase 

(malic dehydrogenase), MDH, is based on an unusual mechanism of enzymatic biocatalytic 

activity of this enzyme, noted in an early work on the mechanism of action of MDH.82 This 

work82 considered what is called83 a reversible random-sequential bi bi mechanism of action for 

MDH, and reported that MDH can undergo a variant of inhibition82 that results in the slowing-

down of the oxidation/reduction of one of the two substrate/product redox couples. As a result of 

this observation, modeling of the filtering effect here is quite different from that for the earlier-

encountered31,53-58,65 “intensity filtering” systems. We develop an appropriate description and 

then verify it by applying the model to data for a system where the initial linear response, 

Scheme 1(b), is obtained by the biocatalytic action of another enzyme, glucose dehydrogenase, 

GDH.  

 

  

EXPERIMENTAL SECTION 

  

Materials and instrumentation  

 

 Malate dehydrogenase (MDH; E.C. 1.1.1.37) from porcine heart, glucose dehydrogenase 

(GDH; E.C. 1.1.1.47) from Pseudomonas sp., β-nicotinamide adenine dinucleotide sodium salt 

(NAD+), D-(+)-glucose, oxaloacetic acid, and 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris-

buffer) were obtained from Sigma-Aldrich and used without further purification. All experiments 

were carried out in ultrapure water (18.2 MΩ·cm; Barnstead NANOpure Diamond). A Shimadzu 

UV-2450 UV–Vis spectrophotometer with 1 mL poly(methyl methacrylate) (PMMA) cuvettes, 

was used for all optical kinetic measurements.  

 

Experimental system and procedures 

 

 The biocatalytic processes probed in the experimental setup are schematically shown in 

Scheme 2. All experiments were performed at room temperature, 23  2 C. Operation of the 

biocatalytic system without filtering: Glucose (varied from 0 to 8 mM), GDH (326 mU/mL), 
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MDH (400 mU/mL), and NAD+ (1.5 mM), were combined in Tris-buffer (0.5 M, pH 7.4) and 

used to generate NADH whose absorbance at 340 nm was monitored for 600 seconds. Operation 

of biocatalytic system with filtering: The above experiments were repeated in the presence of 

oxaloacetic acid (0.3 mM). Note that oxaloacetic acid is ionized to the oxaloacetate ion in the 

buffer solution, pH 7.4, and therefore it is referenced in the text as “oxaloacetate.” 

 

 

 

Scheme 2. The schematics of the enzymatic processes in the considered biocatalytic 

cascade. The chemicals which are initially in the system with filtering (see text) are 

marked in blue. The double-arrows schematically highlight the fact that the function of 

MDH is reversible.  
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THEORETICAL SECTION 

 

Linear signal transduction followed by fast reversible deactivation of the output 

 

 Full kinetic description of enzymatic processes requires in most cases numerous 

parameters (rate constants) to describe the functioning of each enzyme. This aspect of the 

modeling will be further discussed later in this section. In this subsection, we consider a simple 

model with a minimal number of parameters that could be proposed to describe the effect on a 

linear response — of the type shown in Scheme 1(b) — of an added process that affects the 

output product, the concentration of which will be denoted ܲሺݐሻ, by rapidly converting it to and 

equilibrating it with another compound that is inert as far as contributing to the output signal 

measurement is concerned. Even though our ultimate conclusion will be that this simple 

description is not adequate for the present system, the model itself is important to study because 

adding fast, reversible processes of this sort by chemical or biochemical means can be done in 

numerous ways. 

 

 Here the first enzyme in the cascade, GDH, is utilized as a biocatalyst in the kinetic 

regime typical for many uses of all enzymes, i.e., both of its input chemicals (substrates), glucose 

and NAD+, are provided with the initial concentrations large enough to have the products of the 

reaction generated with a constant rate as functions of time. For our product of interest, NADH, 

we thus assume that its concentration, ܲሺݐሻ, varies according to 

 

ௗ௉

ௗ௧
ൌ ௚൯ݐ൫ܲ ,ܩܴ ൌ ௚. (1)ݐܩܴ

 

where in our case ܴ is a rate constant that can be fitted from the data, whereas ܩ is the initial 

concentration of glucose, which is our input at time ݐ ൌ 0, varied from 0 to 8 mM. We note that 

other reagents in the present system have fixed initial concentrations. The linear behavior in time 

applies for all but the smallest inputs, ܩ, and it breaks down for very short times as well as for 

very long times on the time-scales of the experiments, which involved measuring the output in 

steps of fractions of seconds, for up to 600 s. 
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 The second enzyme in the cascade, MDH, is also used in the regime of plentiful supply of 

its second substrate (other than our output), oxaloacetate, provided with a large initial 

concentration. Since its functioning is reversible (we consider details later), we could attempt to 

describe the kinetics of the present system by the effective processes 

 

ܩ
ܴ
→
	
ܲ,          ܲ	

ାݎ
⇄	
ݎି
 (2) .ܯ

 

We note that MDH actually oxidizes NADH to NAD+, which is then our “inert” compound, but 

since NAD+ is already present in the system in a large quantity, the variation of its concentration 

has little effect on the reverse process. However, malate, denoted, ܯሺݐሻ, see Scheme 2, which is 

not present initially, directly (and for simplicity we assume linearly) affects the reverse process 

rate. The appeal of the present model is not in its accuracy, but its simplicity and the fact that the 

resulting rate equations can be solved in closed form, 

 

ௗ௉

ௗ௧
ൌ ܩܴ െ ାܲݎ ൅ ݎି  ,ܯ

ௗெ

ௗ௧
ൌ ାܲݎ െ ݎି  (3) ,ܯ

  

ܲሺݐሻ ൌ ܩܴ ൜
௥శൣଵି௘ష

ሺೝశశೝషሻ೟൧

ሺ௥శା௥షሻమ
൅ ௥ష௧

௥శା௥ష
ൠ. (4) 

  

 One would assume that adding a fast reversible process that deactivates a part of the 

product, up to a fraction that corresponds to the concentrations of the rate-limiting chemicals for 

which that reversible process equilibrates, might have some “filtering” effect. However, the 

result obtained in Eq. (4) suggests that there is no filtering at all. Indeed, the dependence of the 

product ܲ൫ݐ௚൯ on the input, ܩ, remains linear for any fixed “gate time” ݐ௚, with a reduced slope 

(means, with loss of intensity). The original time-dependence, cf. Eq. (1), is linear in both ܩ and 

 ௚. However, with the added process the time dependence and the input dependence are noݐ

longer thus related. As illustrated in Scheme 3, at small times the rate of the product output is 

unchanged because then the added process is not active. For large times a reduced rate, ܴݎିܩ /

ሺݎା ൅ ݎି ሻ, is approached, as shown in the scheme. 
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Scheme 3. Time dependence of the NADH concentration for arbitrarily selected typical 

parameter values (ܩ ൌ 7	mM, ܴ ൌ 6.75 ൈ 10ି଺	sିଵ, ݎା ൌ ݎ2ି ൌ 4 ∙ 10ିଷ	sିଵ) with (the 

red curve) and without (the black straight line) the added fast reversible “output 

deactivation” process. The dashed line is the asymptotic slope (rate) for large times.  

  

 We thus reach an interesting conclusion that the experimentally observed25 change from 

the linear to threshold response, Scheme 1(b) to 1(d), is due to more complicated kinetic 

mechanisms than the simple one just considered. The motivation for the present study has been 

to identify the origin of the observed effect, which turns out to be connected to an interesting 

kinetic property of the functioning of the enzyme MDH, as will be described in the rest of this 

section. We note that the present model offers a general conclusion that adding a fast, reversible 

process of deactivation of the input by equilibrating it with another species cannot in itself result 

in threshold type (at low inputs) intensity filtering. Examples31,53-65 when such an approach 
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worked have always involved the absence of equilibration by a limitation on how much of the 

other species can be produced (imposed by the process requiring some other, limited-supply 

chemical as an input). 

 

A model for the MDH kinetics with inhibition 

 

 All enzymes have rather complicated kinetic mechanisms that involve the formation of 

complexes with their substrates, then processes involving these complexes, etc., in most cases 

resulting in the final restoration of the enzyme at the end of the cascade, when products are 

released. This includes our first enzyme, GDH, the mechanism of action of which is relatively 

standard,84-86 but would require several rate constants to fully model. The second enzyme, MDH, 

has a rather complicated mechanism of action82,87-89 as far as the number of intermediate 

complexes is concerned. The mechanism is in fact not fully studied. MDH can form complexes82 

with all four of the relevant substrates for its direct (NADH and oxaloacetate) or reverse (NAD+ 

and malate) functioning, and then form triple-complexes in which the actual redox-pair 

conversions occur. Modeling90 of such processes in their full kinetic detail would require at least 

18 rate constants. This illustrates why it is important to use simplified (few-parameter) kinetic 

models for a semi-qualitative description of the response in sensors and biomolecular computing 

applications. Such approaches21,53 usually involve setting up an effective phenomenological rate 

equation description that captures the main pathways of the involved processes.  

  

  The output product, NADH, denoted P for brevity, once it is generated by the GDH 

process, activates all the “direct” complex-formation and redox conversions involving MDH. As 

a result, not only is NADH partially converted back to NAD+, to be denoted N, but also the 

concentration of malate, denoted M, builds up. This can gradually also activate the “reverse” 

processes involving MDH, driving the system towards equilibration. Measurements have been 

reported in the literature82 that, as the relative concentration of malate as compared to 

oxaloacetate is increased, the redox inter-conversion rate NADH ↔ NAD+ actually slows down, 

whereas the inter-conversion rate oxaloacetate (to be denoted O) ↔ malate increases. While at 

first this might look paradoxical, the likely explanation is as follows. Most of the enzyme, 

denoted E, gets “stuck” in the complexes EP and EN (as well as in more complicated complexes, 
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ENM and EPO). The fast inter-conversion oxaloacetate ↔ malate (O ↔ M) is accompanied (one 

might say, biocatalyzed) by the inter-conversion EP ↔ EN. This interesting mechanism can be 

entirely kinetic or can also be caused by malate inhibiting82 some of the reaction pathways. This 

is not well-known, and such a study is outside the scope of the present work. It is important to 

emphasize that despite the earlier experimental evidence,82 the considered mechanism of the 

redox pair EP ↔ EN replacing P ↔ N as the one accompanying the redox inter-conversion O ↔ 

M as the concentration of malate builds up, is a conjecture. In fact, the observation that this 

assumption leads to modeling that fits the data, as reported in the next section, provides an 

additional support to this conjecture. 

 

 We model this effect phenomenologically, with a minimal possible number of 

parameters. Considering that oxaloacetate is supplied in large quantity, we can ignore its 

depletion. We assume that the concentration of malate that would correspond to steady state is 

 ଴. We then write the rate equation of the linear supply of the product, cf. Eq. (1), but now alsoܯ

with the added term for the depletion of the product,  

 

ௗ௉

ௗ௧
ൌ ܩܴ െ ଴ܯሺܭ െܯሻܲ ൌ െܲܭଶ െ ଴ܯሺܭ െ ሻܲݐܴ ൅  (5) ,ܩܴ

 

where ܭ is the rate constant for the decrease in the amount of the product, P, due to the initially 

active mechanism, which, however, is gradually replaced by the mechanism involving EP ↔ EN 

as ܯ increases from 0 to ܯ଴. This assumes that the relative rates of the two mechanisms are 

directly proportional to ܯ଴ െܯ and ܯ, respectively. The second expression in Eq. (5) was 

obtained by using ܯሺݐሻ ൌ ݐܩܴ െ ܲሺݐሻ. The resulting equation for ܲሺݐሻ is solved by 

 

ܲሺݐሻ ൌ ݐܩܴ െ ଴ܯ ൅
ெబ௘

ష಼ቀ
భ
మೃಸ೟షಾబቁ೟

ଵା௄ெబ ׬ ௘ష಼ቀ
భ
మೃಸഓషಾబቁഓௗఛ

೟
బ

, (6) 

 

or, equivalently,  
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ܲሺݐሻ ൌ ݐܩܴ	 െ ଴ܯ ൅
ଶ√௄ோீெబ௘

಼೟
మ ሺమಾబషೃಸ೟ሻ

√ଶగ௄ெబ௘
಼ಾబ

మ

మೃಸ ൥erfቆට ಼
మೃಸ

ெబቇିerf൭ට ಼
మೃಸ

ሺெబିோீ௧ሻ൱൩ାଶ√௄ோீ

. (7) 

 

This expression provides the dependence of ܲሺݐ௚ሻ on ܩ, of the type shown in Scheme 1(d), and 

its application for data fitting is described in the next section. 

 

 

RESULTS AND DISCUSSION 

 

Considerations for data fitting 

 

 Our primary objective in this work has been to demonstrate that a form of an inhibition 

mechanism in the functioning of MDH results in threshold filtering of the type that converts a 

linear response shown in Scheme 1(b) to that of Scheme 1(d). In order to confirm the validity of 

the proposed model, Eqs. (5-7), we will now use it to fit experimental data for the system 

sketched in Scheme 2. The time-dependent data were collected for times up to 600 s, in steps of a 

fraction of a second, for the following initial glucose concentrations, 5 ,4 ,3 ,2 ,1 ,0.5 ,0.25 = ܩ, 

6, 7 and 8 mM. All the other chemicals that are initially present in the system were at the same 

initial concentrations for all the experiments without (no oxaloacetate) and with (fixed initial 

amount of oxaloacetate added) filtering. 

 

 Generally, the obtained data are rather noisy, fluctuating at least ±10% (of the maximum 

signal) seen as spread in the data and also as variations between experimental realizations, most 

of which were repeated 3 to 4 times for this estimate. The latter can be partially attributed to 

variations in and also degradation of the enzyme activity. This is typical for such enzymatic 

cascades, and underscores the value of developing few-parameter models and the preference30-44 

for a linear response, Scheme 1(b). Therefore, in our presentation of the results we focus on a 

single set of data, to minimize the effect of the enzyme degradation, taken continuously by 

varying (increasing) the input signal (glucose) first without the “filter” and then with it. We 

primarily report results for data collected for glucose values  8 ,7 ,6 ,5 ,4 ,3 ,2 = ܩ mM, because 
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the data for the lower glucose values are particularly noisy, and also the time-dependence of the 

output is not even approximately linear, which means that the simplest approximation for the 

non-filtered response, Eq. (1), is not accurate (better phenomenological modeling approaches are 

possible,21,53 but would require more adjustable parameters). 

 

 The present model can provide imprecise data fitting for three main reasons: first, the 

data are noisy; second, the model itself is approximate, with effective rate parameters lumping 

together many actual chemical steps, as described in the preceding section; third, some of the 

data are taken in the regime for which the model might not be designed, specifically, when the 

first enzyme, GDH, is not supplied with enough glucose to “drive” its response to be linear, etc. 

With these reservations in mind, we carried out data fitting of the time dependence and also of 

the input (glucose) dependence at fixed times.  

 

Results of data fitting 

 

 Time-dependence of two typical data sets is illustrated in Fig. 1. We note the deviations 

from the linear response for larger times and for smaller glucose inputs. The model curves shown 

will be described shortly. Figure 2 illustrates input-dependence at two different “gate times” ݐ௚. 

The model curves here will also be described later. Let us first consider the (approximate) linear 

response without filtering. Figure 3 shows data sets for glucose inputs 2 mM and larger, for times 

up to t = 200 s. The data for the smaller G values clearly show the inherent noise. Note that the 

differences between realizations with different G values, seen as the dots fluctuating about the 

general trend in Fig. 2, and between repeats with the same G values (not shown here) are much 

larger, because the time-variation (Fig. 3) is strongly correlated within each set.  
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Figure 1. Top panel: Measured time dependence for input 4 = ܩ mM (a set of 

experimental points that overlap to practically merge into noisy-looking solid lines). (a) 

without filtering; (b) with filtering. Bottom panel: The same for input 7 = ܩ mM. The 

dashed lines show model fits as described in the text.  
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Figure 2. Top panel: Measured glucose dependence for fixed time t = ݐ௚ = 360 s (shown 

as dots). (a) without filtering; (b) with filtering. Bottom panel: The same for ݐ௚ = 600 s. 

The dashed lines show model fits as described in the text. 
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Figure 3. RMS fit of the experimental data for different initial glucose concentrations. 

Top to bottom: data sets of overlapping points correspond to G = 7, 8, 6, 5, 4, 3, 2 mM, as 

labeled in the figure. The dashed straight line has slope ܴ ൌ 6.75 ൈ 10ିହ	sିଵ, which is 

the value obtained by fitting all the shown data together.  

  

 Note that the non-filtered data for the times and glucose inputs shown are rather linear. 

The quantity ܲሺݐሻ/ܩ plotted in Fig. 3, should actually be a single straight line if the model 

assumptions leading to Eq. (1) are correct. However, as mentioned earlier, noise and systematic 

variations are present. Still, the data in Fig. 3 as a whole can be well fitted by a straight line with 

the representative (for all data sets) slope ܴ ൌ 6.75 ൈ 10ିହ	sିଵ. The same line is also shown in 

Fig. 1 for a larger time span, as the model fit for the non-filtered case, illustrating the 

approximate linear behavior for the shown data sets, as well as various degrees of deviation for 

larger times. The trends for the other data sets without filtering were similar. In Fig. 2 the straight 

lines labelled (a), drawn as the model fits for the non-filtered case, correspond to the same rate 

constant, R, values. The slopes of these lines are ܴݐ௚. 
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 We note that data fitting without filtering does not actually probe the validity of the 

proposed kinetic mechanism for filtering. Rather, it checks the assumptions leading to the 

simplified linear response model, Eq. (1). Therefore, for this part of the data analysis we utilize a 

single overall-slope rate constant, R, value. We will use this value also for fitting data with 

filtering added. In the latter case we will explore how well the model equations, Eqs. (6-7), fit 

specific data sets. We then also propose representative parameter values for ܯ଴ and ܭ that can be 

used for semi-quantitative fitting of the present data. With proper care and adjustment these 

parameter values, R, ܯ଴, ܭ can by useful for fitting data for other systems25 with the same MDH 

filtering mechanism and with an approximately linear output of the product, NADH, without 

filtering. In Fig. 1, the fitted curves, labelled (b), were obtained by using the earlier determined 

rate constant R, but the rate constant K and the value of ܯ଴ were both fitted from the  data for 

that particular set of time dependence (for the specific value of G) by using a two-parameter 

RMS fit. The quality of the fits is quite good, with a clearly defined threshold behavior and linear 

increase in the output signal at later times, especially for the larger G value shown. Similar 

behavior was found for other G values, and the results for the parameters are summarized in 

Table 1. Similarly, data for several “gate times,” from 300 to 600 s, were fitted, as illustrated by 

the curves labelled (b) in Fig. 2, and the same comments regarding the quality of the model 

description apply. The resulting values of the parameters are given in Table 2.  

 

 

 

Table 1. Results of parameter fitting of time-dependent data sets for fixed G. 

 

ሻܯሺ݉	ܩ ଴ܯ ሺܯߤሻ ܭ ሺ݉ିܯଵିݏଵሻ

8 73 1.55 
7 79 1.86 
6 106 0.81 
5 116 1.43 
4 100 1.06 
3 85 1.68 
2 90 3.17 
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Table 2. Results of parameter fitting of input (glucose) dependent data sets for fixed ݐ௚. 

 

 (mMିଵsିଵ) ܭ ଴ (μM)ܯ ௚ (s)ݐ

300 87 5.28 
360 92 2.48 
420 93 1.61 
480 95 0.93 
540 93 0.62 
600 92 0.43 

 

 

 The parameter values reported in Tables 1 and 2 reflect the fact that the data are rather 

noisy, as emphasized earlier, but also the property that the data sets are not large enough to 

determine both parameters accurately. The K values in Table 2, and to a lesser extent the ܯ଴ 

values in Table 1, illustrate this, and again underscore the earlier stressed fact that the use of as 

few parameters as possible in modeling data for such systems is important. Notwithstanding the 

noise in the data and in the fitted mean parameter values, we can define representative values and 

consider the quality of the data fits with these values used. Averaging the results for ܯ଴ and ܭ in 

Table 1, which showed generally less spread than those in Table 2, we propose a set of 

representative parameters to supplement the earlier determined value of R, to yield 

 

ܴ ൌ 6.75 ൈ 10ିହ	sିଵ,     ܭ ൌ 1.65	mMିଵsିଵ,     ܯ଴ ൌ 93 μM. (8) 

 

We note that our primary application for the proposed model is to describe the glucose-

dependence of the output for fixed “gate times.” Figure 4 shows examples of the model curves 

drawn with the parameter set in Eq. (8), compared to the data, for two gate times somewhat 

different from those selected for Fig. 2. Unlike Fig. 2, however, the curves labelled (b) were not 

fitted using the specific data shown, but rather calculated with values from Eq. (8). Still, the 

quality of the data description remains satisfactory for the shown and other gate times from 300 

up to 600 s. 
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Figure 4. Top panel: Measured glucose-dependence for fixed time t = ݐ௚ = 300 s (shown 

as dots). (a) without filtering; (b) with filtering. Bottom panel: The same for ݐ௚ = 480 s. 

The dashed lines were drawn by using representative model parameters given in Eq. (8). 
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Conclusion 

 

 In summary, in this work we developed a theoretical understanding and simple few-

parameter models explaining why fast reversible conversion of the product to another compound 

cannot on its own result in (bio)chemical “filtering.” Filtering by the added processes catalyzed 

by the enzyme MDH, observed in earlier experiments, was then attributed to the enzyme’s 

unusual mechanism of action. Experimental data for a system that linearly outputs the product 

that MDH can convert to another chemical was analyzed within the proposed model. Successful 

quantitative application of the model confirms the proposed mechanism for filtering. These 

findings will find applications in selecting other enzyme-catalyzed processes as potential 

“filtering” network steps in biomolecular cascades. Future work can study the “modularity” of 

such filtering by modeling the same filter process with other enzymatic systems25,81 that can 

output the same product, NADH. 
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